
APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

NASA TECHNICAL

HANDBOOK

NASA-HDBK-4009

National Aeronautics and Space Administration Approved: 06-05-2014

Washington, DC 20546-0001

SPACE TELECOMMUNICATIONS RADIO SYSTEM (STRS)

ARCHITECTURE STANDARD

RATIONALE

MEASUREMENT SYSTEM IDENTIFICATION:

None.

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

2 of 119

DOCUMENT HISTORY LOG

Status Document

Revision

Approval Date Description

Baseline 06-05-2014 Initial Release

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

3 of 119

FOREWORD

This Handbook is published by the National Aeronautics and Space Administration (NASA) as a

guidance document to provide engineering information; lessons learned; possible options to address

technical issues; classification of similar items, materials, or processes; interpretative direction and

techniques; and any other type of guidance information that may help the Government or its

contractors in the design, construction, selection, management, support, or operation of systems,

products, processes, or services.

This Handbook is approved for use by NASA Headquarters and NASA Centers, including

Component Facilities and Technical and Service Support Centers.

This Handbook establishes the key rationale, explanatory material, and additional information to

support NASA-STD-4009, Space Telecommunications Radio System (STRS) Architecture Standard.

This architecture is a standard for reconfigurable communication transceiver developments among

NASA missions.

NASA-STD-4009 strives to provide commonality among NASA radio developments to take full

advantage of emerging software-defined radio (SDR) technologies from mission to mission. This

architecture serves as an overall framework for the design, development, operation, and upgrade of

these software-based radios.

Requests for information, corrections, or additions to this Handbook should be submitted via

“Feedback” in the NASA Standards and Technical Assistance Resource Tool at

https://standards.nasa.gov.

Original Signed By: 06-05-2014

Ralph R. Roe, Jr. Approval Date

NASA Chief Engineer

https://standards.nasa.gov/

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

4 of 119

SECTION

TABLE OF CONTENTS

PAGE

DOCUMENT HISTORY LOG ... 2

FOREWORD ... 3

TABLE OF CONTENTS ... 4

LIST OF FIGURES ... 8

LIST OF TABLES ... 8

1. SCOPE ... 9

1.1 Purpose ... 9

1.2 Applicability ... 9

2. APPLICABLE DOCUMENTS ... 9

2.1 General .. 9

2.2 Government Documents ... 10

2.3 Non-Government Documents ... 10

2.4 Order of Precedence ... 10

3. ACRONYMS AND DEFINITIONS .. 11

3.1 Acronyms and Abbreviations ... 11

3.2 Definitions .. 12

4. HIGH-LEVEL RATIONALE ... 12

4.1 Operational Requirements .. 13

4.2 Operating Environment (OE) Requirements .. 13

4.3 Documentation Requirements .. 14

4.4 Source Code Requirements .. 14

4.5 Configuration File Requirements ... 15

4.6 Roles and Responsibilities .. 18

5. HOW TO USE STRS APIs .. 21

5.1 How to Associate FPGA with an STRS Application ... 21

5.2 How to Load FPGA .. 21

5.3 How to Set Attributes ... 21

5.4 How to Get Attributes ... 21

5.5 How to Push Packets .. 22

5.6 How to Pull Packets .. 22

5.7 How to Process Errors .. 22

5.8 How to Make Multiple Instances of an Application ... 22

5.9 How to Map Memory Locations .. 22

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

5 of 119

SECTION

TABLE OF CONTENTS (Continued)

PAGE

5.10 When to Use STRS_Log and STRS_Write ... 23

5.11 Difference Between Run Test and Ground Test .. 23

5.12 When to use Start/Stop, Load/Unload, and Open/Close 24

6. QUESTIONS AND ANSWERS .. 25

6.1 Fault State and Use of the ERROR, WARNING, and FATAL Queues 25

6.2 Message Queues Need Clarification ... 26

6.3 What is an STRS Device? ... 28

6.4 How to Configure and Control SDR Hardware? .. 29

6.5 STRS Infrastructure Methods Do Not Belong to Any Class 30

6.6 Explain Clocks and Timers ... 31

6.7 FPGA Partial Reconfiguration .. 31

6.8 Compliance Testing .. 31

6.9 Configuration Files Examples ... 32

6.10 C Language Naming Duplication.. 35

6.11 Sequence Diagrams Depicting STRS API Calls ... 36

6.12 Why are APP_Instance and APP_Initialize Separate? ... 39

6.13 Why Start with SCA? .. 39

6.14 Security for STRS ... 40

6.15 What is Configurable Hardware Design? ... 41

7. STRS REQUIREMENTS, RATIONALE, AND VERIFICATION

METHOD .. 37

 42

7.1 STRS-1 Power Up ... 44

7.2 STRS-2 Provide Platform Diagnostics ... 44

7.3 STRS-3 Use Platform Diagnostics .. 45

7.4 STRS-4 Document Resources ... 45

7.5 STRS-5 Document Capability... 46

7.6 STRS-6 Document Radio Frequency (RF) Behavior.. 46

7.7 STRS-7 Document Module Interfaces .. 47

7.8 STRS-8 Document Module Control ... 48

7.9 STRS-9 Document Power ... 49

7.10 STRS-10 STRS Application Uses OE .. 50

7.11 STRS-11 OE Uses HAL ... 51

7.12 STRS-12 STRS Application Repository ... 52

7.13 STRS-13 OE Controls Signal-Processing Module (SPM) 53

7.14 STRS-14 Provide Platform-Specific Wrapper .. 54

7.15 STRS-15 Document Platform-Specific Wrapper .. 55

7.16 STRS-16 Use C/C++ WF Interface .. 56

7.17 STRS-17 OE Uses STRS Application Control API .. 56

7.18 STRS-18 Use C/C++ Compile-Time .. 57

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

6 of 119

SECTION

TABLE OF CONTENTS (Continued)

PAGE

7.19 STRS-19 Use C/C++Run-Time .. 58

7.20 STRS-20 Include STRS_ApplicationControl.h .. 58

7.21 STRS-21 Provide STRS_Application Control.h .. 59

7.22 STRS-22 STRS_ApplicationControl Base Class ... 59

7.23 STRS-23 Include STRS_Sink.h ... 60

7.24 STRS-24 Provide STRS_Sink.h ... 60

7.25 STRS-25 STRS_Sink Base Class ... 61

7.26 STRS-26 Include STRS_Source.h .. 61

7.27 STRS-27 Provide STRS_Source.h ... 62

7.28 STRS-28 STRS_Source Base Class ... 62

7.29 STRS-29 APP_Configure ... 63

7.30 STRS-30 APP_GroundTest .. 47 64

7.31 STRS-31 APP_Initialize ... 47 65

7.32 STRS-32 APP_Instance .. 65

7.33 STRS-33 APP_Query ... 66

7.34 STRS-34 APP_Read ... 66

7.35 STRS-35 App_ReleaseObject .. 67

7.36 STRS-36 APP_RunTest ... 68

7.37 STRS-37 APP_Start ... 50 69

7.38 STRS-38 APP_Stop .. 70

7.39 STRS-39 APP_Write .. 70

7.40 STRS-40 STRS_Configure ... 71

7.41 STRS-41 STRS_GroundTest .. 72

7.42 STRS-42 STRS_Initialize ... 73

7.43 STRS-43 STRS_Query ... 74

7.44 STRS-44 STRS_ReleaseObject .. 75

7.45 STRS-45 STRS_RunTest ... 76

7.46 STRS-46 STRS_Start ... 77

7.47 STRS-47 STRS_Stop ... 78

7.48 STRS-48 STRS_AbortApp ... 79

7.49 STRS-49 STRS_GetErrorQueue .. 79

7.50 STRS-50 STRS_HandleRequest .. 80

7.51 STRS-51 STRS_InstantiateApp ... 55 80

7.52 STRS-52 STRS_IsOK .. 81

7.53 STRS-53 STRS_Log .. 81

7.54 STRS-54 STRS_Log Error ... 82

7.55 STRS-55 STRS_Log Fatal ... 82

7.56 STRS-56 STRS_Log Warning ... 83

7.57 STRS-57 STRS_Log Telemetry ... 83

7.58 STRS-58 STRS_Write .. 84

7.59 STRS-59 STRS_Read ... 84

7.60 STRS-60 Device Control .. 85

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

7 of 119

SECTION

TABLE OF CONTENTS (Continued)

PAGE

7.61 STRS-61 STRS_DeviceClose .. 86

7.62 STRS-62 STRS_DeviceFlush ... 60 86

7.63 STRS-63 STRS_DeviceLoad ... 87

7.64 STRS-64 STRS_DeviceOpen ... 60 87

7.65 STRS-65 STRS_DeviceReset ... 88

7.66 STRS-66 STRS_DeviceStart .. 88

7.67 STRS-67 STRS_DeviceStop .. 89

7.68 STRS-68 STRS_DeviceUnload .. 89

7.69 STRS-69 STRS_SetISR ... 90

7.70 STRS-70 STRS_FileClose ... 90

7.71 STRS-71 STRS_FileGetFreeSpace .. 91

7.72 STRS-72 STRS_FileGetSize .. 91

7.73 STRS-73 STRS_FileGetStreamPointer .. 92

7.74 STRS-74 STRS_FileOpen .. 92

7.75 STRS-75 STRS_FileRemove ... 62 93

7.76 STRS-76 STRS_FileRename ... 93

7.77 STRS-77 Use Messaging API .. 94

7.78 STRS-78 STRS_QueueCreate .. 94

7.79 STRS-79 STRS_QueueDelete .. 95

7.80 STRS-80 STRS_Register ... 95

7.81 STRS-81 STRS_Unregister .. 96

7.82 STRS-82 Use Time Control API .. 97

7.83 STRS-83 STRS_GetNanoseconds .. 98

7.84 STRS-84 STRS_GetSeconds .. 98

7.85 STRS-85 STRS_GetTime ... 66 99

7.86 STRS-86 STRS_GetTimeWarp .. 99

7.87 STRS-87 STRS_SetTime ... 100

7.88 STRS-88 STRS_Synch ... 100

7.89 STRS-89 Provide STRS.h .. 101

7.90 STRS-90 Provide POSIX ... 101

7.91 STRS-91 Use POSIX .. 102

7.92 STRS-92 Document HAL .. 104

7.93 STRS-93 OE Uses HAL (Deleted) ... 105

7.94 STRS-94 External Commands .. 106

7.95 STRS-95 Use STRS APIs ... 107

7.96 STRS-96 Use STRS_Query .. 107

7.97 STRS-97 Use STRS_Log (Deleted) ... 108

7.98 STRS-98 Document Platform for XML ... 109

7.99 STRS-99 Document WF for XML ... 110

7.100 STRS-100 Provide XML File ... 111

7.101 STRS-101 XML Content .. 112

7.102 STRS-102 Provide XML Schema .. 113

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

8 of 119

SECTION

TABLE OF CONTENTS (Continued)

PAGE

7.103 STRS-103 Provide XML Transformation Tool .. 114

7.104 STRS-104 Provide XML Transformed .. 115

7.105 STRS-105 OE Provides API in C ... 116

7.106 STRS-106 Use STRS.h ... 116

7.107 STRS-107 Document External Commands .. 117

7.108 STRS-108 Document Thermal and Power Limits .. 118

7.109 STRS-109 Provide General Purpose Processing Module 119

FIGURE

LIST OF FIGURES

PAGE

1 Roles and Products ... 20

2 Memory Map .. 23

3 Sample Publisher-Subscriber Sequence Diagram .. 27

4 STRS Application/Device Structure ... 29

5 Example of Predeployed Configuration File for NASA-STD-4009,

Appendix A ...

 33

6 Obtain Array of Pointers to Methods ... 36

7 Simplified Sequence Diagram for STRS_InstantiateApp 37

8 Simplified Sequence Diagram for STRS_AbortApp .. 38

9 Simplified Sequence Diagram for STRS_Configure .. 38

TABLE

LIST OF TABLES

PAGE

1 Substitutions for Figure 9 ... 39

2 STRS Architecture Standard, Table 59, Replacements for Unsafe Functions 103

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

9 of 119

SPACE TELECOMMUNICATIONS RADIO SYSTEM (STRS)

ARCHITECTURE STANDARD RATIONALE

1. SCOPE

1.1 Purpose

The purpose of this Handbook is to present the rationale which underlays the requirements

contained in NASA-STD-4009, Space Telecommunications Radio System (STRS) Architecture

Standard, the companion document to this Handbook. Supporting examples and further

descriptions for clarification of portions of NASA-STD-4009 are also provided. Answers

prompted by questions from the Space Communications and Navigation (SCaN) Testbed

partners, who created the first space implementation of STRS, are also included. As the Standard

evolves, minor corrections and updates to obsolete information will be added to the Handbook.

The Handbook is aimed at helping readers and implementers of NASA-STD-4009 understand

the Standard.

NASA-STD-4009 provides an STRS overview, background, and detailed descriptions that might

be useful to the reader not familiar with the STRS architecture.

1.2 Applicability

This Handbook is applicable to providing the rationale as well as additional information to

NASA-STD-4009, which is a standard for reconfigurable communication transceiver

developments among NASA missions.

This Handbook is approved for use by NASA Headquarters and NASA Centers, including

Component Facilities and Technical and Service Support Centers. This Handbook may also apply to

the Jet Propulsion Laboratory or to other contractors, grant recipients, or parties to agreements only

to the extent specified or referenced in their contracts, grants, or agreements.

This Handbook, or portions thereof, may be referenced in contract, program, and other Agency

documents for guidance. When this Handbook contains procedural or process requirements, they

may be cited in contract, program, and other Agency documents for guidance.

2. APPLICABLE DOCUMENTS

2.1 General

The documents listed in this section are applicable to the guidance in this Handbook.

2.1.1 The latest issuances of cited documents shall apply unless specific versions are

designated.

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

10 of 119

2.1.2 Non-use of specific versions as designated shall be approved by the responsible Technical

Authority.

The applicable documents are accessible via the NASA Standards and Technical Assistance

Resource Tool at https://standards.nasa.gov or may be obtained directly from the Standards

Developing Organizations or other document distributors.

2.2 Government Documents

 NASA

NASA-STD-4009 Space Telecommunications Radio System (STRS)

Architecture Standard

NASA/TM—2007-215042

Space Telecommunications Radio System (STRS)

Architecture Goals/Objectives and Level 1 Requirements

NASA/TP—2008-214813

Space Telecommunications Radio System Software

Architecture Concepts and Analysis

NASA/TM—2009-215478

Case Study: Using the OMG SWRADIO Profile and SDR

Forum Input for NASA’s Space Telecommunications Radio

System

NASA/TM—2011-216948

Symbol Tables and Branch Tables: Linking Applications

Together

NASA/TM—2011-217266 Space Telecommunications Radio System (STRS)

Compliance Testing

NPR-7150.2 NASA Software Engineering Requirements

2.3 Non-Government Documents

 RTCA, Incorporated
DO-178B Software Considerations in Airborne Systems and

Equipment Certification

2.4 Order of Precedence

This Handbook provides guidance for the rationale which underlays the requirements contained

in NASA-STD-4009 but does not supersede nor waive established Agency

requirements/guidance found in other documentation.

https://standards.nasa.gov/
http://www.ntrs.nasa.gov/search.jsp?R=20080008862&hterms=Space+Telecommunications+Radio+System+STRS+Architecture+Goals%252fObjectives+Level+Requirements+Document&qs=Ntx%253Dmode%2520matchallpartial%2520%2526Ntk%253DAll%2526N%253D0%2526Ntt%253DSpace%2520Telecommunications%25
http://ntrs.nasa.gov/search.jsp?R=20080024190&hterms=STRS+214813&qs=Ntx%253Dmode%20matchallpartial%2526Ntk%253DAll%2526N%253D0%2526Ntt%253DSTRS%20214813
http://ntrs.nasa.gov/search.jsp?R=20090008668&hterms=NASA%252fTM+2009-215478&qs=Ntx%253Dmode%20matchallpartial%20%2526Ntk%253DAll%2526N%253D0%2526Ntt%253DNASA%252FTM%25E2%2580%25942009-215478
http://ntrs.nasa.gov/search.jsp?R=20110004321&hterms=NASA%252fTM+2011-216948&qs=Ntx%253Dmode%20matchallpartial%20%2526Ntk%253DAll%2526N%253D0%2526Ntt%253DNASA%252FTM%25E2%2580%25942011-216948
http://www.ntrs.nasa.gov/search.jsp?R=20120000912&hterms=Compliance+Tools&qs=N%253D0%2526Ntk%253DAll%2526Ntt%253DCompliance%20Tools%2526Ntx%253Dmode%20matchallpartial
http://nodis3.gsfc.nasa.gov/displayDir.cfm?t=NPR&c=7150&s=2A

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

11 of 119

3. ACRONYMS AND DEFINITIONS

3.1 Acronyms and Abbreviations

API application program interface

BIT built-in test

BSP board support package

C++ computer programming language

CORBA Common Object Request Broker Architecture

COTS commercial off the shelf

DLL dynamic link library

DSP digital signal processor

EDIF electronic design interchange format

FPGA field programmable gate array

GPM general-purpose processing module

GPP general purpose processor

GRC Glenn Research Center

HAL hardware abstraction layer

HDL hardware description language

HID hardware interface description

I/O input/output

ID identification, identifier

IEEE Institute of Electrical and Electronic Engineers

ISO International Organization for Standardization

JTRS Joint Tactical Radio System

N/A not applicable

NASA National Aeronautics and Space Administration

NPR NASA Procedural Requirements

OE operating environment

OMG Object Management Group

OS operating system

PIM platform-independent model

POSIX Portable Operating System Interface

PSE51 minimal real-time system profile 51, defined in IEEE Std 1003.13

PSM platform-specific model

RF radio frequency

RTEMS Real-Time Executive for Multiprocessor Systems

RTOS real-time operating system

SCA Software Communications Architecture

SCaN Space Communications and Navigation

SDR software-defined radio

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

12 of 119

SPM signal-processing module

STD standard

STRS Space Telecommunications Radio System

SWaP size, weight, and power

SWRADIO software radio

UML Unified Modeling Language

VHDL VHSIC hardware description language

VHSIC very high speed integrated circuits

W3C World Wide Web Consortium (main international standards organization for the

World Wide Web (abbreviated WWW or W3).

WF Waveform

XML Extensible Markup Language

XSD XML 1.0 Schema Definition

XSL Extensible Stylesheet Language

XSLT Extensible Stylesheet Language Transformation

3.2 Definitions

Key terms and definitions are described in section 3.2 of NASA-STD-4009.

4. HIGH-LEVEL RATIONALE

The rationales for the STRS requirements in NASA-STD-4009 were derived from the Level 1

requirements in NASA/TM—2007-215042, STRS Architecture Goals/Objectives and Level 1

Requirements (summarized below), the restrictions of the space environment, and the use cases

in NASA/TP—2008-214813, STRS Software Architecture Concepts and Analysis. The Object

Management Group (OMG) Software Radio (SWRADIO) profile was considered in

NASA/TM—2009-215478, Case Study: Using the OMG SWRADIO Profile and SDR Forum

Input for NASA’s Space Telecommunications Radio System, and the platform-independent

model (PIM) was used as the starting point for the application software requirements.

STRS Goals and Objectives

4.1 Usable across most NASA mission types (scalability and flexibility).

4.2 Decrease development time and cost.

4.3 Increase reliability of software-defined radios (SDRs).

4.4 Accommodate advances in technology with minimal rework (extensibility).

4.5 Adaptable to evolving requirements (adaptability).

4.6 Enable over the air interoperability with existing assets (interoperability).

4.7 Leverage existing or developing standards, resources, and experience (state-of-

the-art and state-of-practices).

4.8 Maintain vendor independence.

4.9 Enable waveform application portability.

http://www.ntrs.nasa.gov/search.jsp?R=20080008862&hterms=Space+Telecommunications+Radio+System+STRS+Architecture+Goals%252fObjectives+Level+Requirements+Document&qs=Ntx%253Dmode%2520matchallpartial%2520%2526Ntk%253DAll%2526N%253D0%2526Ntt%253DSpace%2520Telecommunications%25
http://ntrs.nasa.gov/search.jsp?R=20080024190&hterms=STRS+214813&qs=Ntx%253Dmode%20matchallpartial%2526Ntk%253DAll%2526N%253D0%2526Ntt%253DSTRS%20214813
http://ntrs.nasa.gov/search.jsp?R=20090008668&hterms=NASA%252fTM+2009-215478&qs=Ntx%253Dmode%20matchallpartial%20%2526Ntk%253DAll%2526N%253D0%2526Ntt%253DNASA%252FTM%25E2%2580%25942009-215478

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

13 of 119

STRS Level 1 Requirements

5.1 Layered Architecture.

5.2 Open Architecture.

5.3 Flexibility in Form Factor.

5.4 Remote Reconfiguration.

5.5 Remote Reprogrammability.

5.6 External Hardware Control.

5.7 Standard Spacecraft Interfaces.

5.8 Existing Waveform Support.

5.9 Multiple Waveform Support.

5.10 Simultaneous Operation of Multiple Waveforms.

5.11 Multi-Service Support.

5.12 Suitable for Any Radio Frequency Bands.

5.13 Multiple Frequency Bands

5.14 Multi-Channel Capability.

5.15 Commanded Built-In-Test and Status Reporting.

5.16 Operational Diagnostics.

5.17 Automated System Recovery/Initialization.

5.18 Navigation Support.

5.19 Network Support.

5.20 Security Compatibility.

5.21 Secure Transmission.

5.22 Processor Sharing.

5.23 Autonomous Link Optimization.

4.1 Operational Requirements

Many Level 1 requirements describe what the architecture has to allow in the way of operations.

However, any mission needs to decide which of these are to be implemented in its specific radios

to support the mission’s needs. In NASA-STD-4009, requirements were written in a layered way

so as to describe many architecture requirements in terms of applications, devices, services, other

artifacts, and how they are used to perform the necessary functions.

The Level 1 requirements include responding to commands sent from an external source for

remote reconfiguration, remote reprogrammability, processor sharing, and commanded Built-In-

Test (BIT) and status reporting. These Level 1 requirements become part of the rationale for

those requirements in NASA-STD-4009 pertaining to the startup and configuration of the radio

as well as commanding the radio and obtaining information back about the configuration and

command success.

4.2 Operating Environment (OE) Requirements

The STRS OE, as used in NASA-STD-4009, is the software environment in which the STRS

applications are executed. Because an STRS radio is really a computer, it has an operating

system (OS) usually created separately from the STRS infrastructure. Using an OS promotes the

STRS goals and objectives for flexibility, decreasing development time and cost, and increasing

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

14 of 119

the reliability of SDRs, by leveraging existing standards, resources, and experience. A real-time

operating system (RTOS) is likely to be used to meet timing deadlines and to support other

operations, even though most of the real-time capability currently resides in field programmable

gate arrays (FPGAs). Furthermore, an OS will need real-time capability if the general purpose

processors (GPPs) are faster and assume more of the telecommunication functions or if the

mission’s telemetry requirements are stringent enough to warrant using an RTOS to be able to

achieve processing constraints.

The Portable Operating System Interface (POSIX) is a standard that is used by many OSs.

Therefore, POSIX was chosen to implement certain functions missing from the list of STRS

Application-provided methods to minimize duplication of methods between STRS and POSIX.

4.3 Documentation Requirements

NASA-STD-4009 requires specific information to be delivered with an STRS-compliant

platform and application. This information is requested to support the goals and objectives for

extensibility, adaptability, portability, and vendor independence. The specific mission procuring

the platform and/or application will require additional documentation to integrate and operate the

platform and/or application with the rest of the system for the mission.

The hardware abstraction layer (HAL) documentation is required by STRS to allow, for

example, the independence of the providers of the infrastructure and the FPGA. The basic goals

and objectives include accommodating advances in technology with minimal rework

(extensibility) and maintaining vendor independence. The STRS infrastructure has access to the

HAL, and the HAL is specific to a platform. Since STRS is designed for the applications to be as

portable as possible, STRS hides the HAL from the STRS application using a bridge pattern so

that an STRS application can use a standardized application program interface (API) to interact

with any specialized hardware.

4.4 Source Code Requirements

Because of size, weight, and power (SWaP) restrictions for space, many of the requirements in

the Department of Defense’s Software Communications Architecture (SCA) version 2.2 were

eliminated for STRS. These include eliminating the requirement for Common Object Request

Broker Architecture (CORBA) and the onboard parsing of the Extensible Markup Language

(XML). Although object-oriented Unified Modeling Language (UML) diagrams were used for

parts of the description to clarify relationships, they did not become part of the requirements. As

described in the Case Study, STRS was able to use almost the same PIM as the OMG’s

SWRADIO to come up with a very different implementation.

Because the STRS architecture needed to support a C language interface to minimize SWaP, a

pure object-oriented approach was unsatisfactory. To encapsulate functionality in a consistent

manner, APIs were defined and the corresponding #include files were required to constrain the

method signatures appropriately. A subset of the infrastructure APIs were required to call the

appropriate application API. Because of the C language interface, the methods were

differentiated so that the STRS infrastructure APIs had a different naming convention and two

additional arguments:

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

15 of 119

a. The fromWF argument in many of the STRS infrastructure APIs is the handle

identification (ID) used to indicate who the caller or source is.

b. The toWF argument in many of the STRS infrastructures APIs is the handle ID used

to indicate who the responder or destination is. The STRS infrastructure uses the toWF to

determine which application, device, file, or queue is to be used to perform any further

processing. Then the infrastructure-provided method usually calls the corresponding

Application-provided method.

A handle ID is used to control access to applications, devices, and so forth. The fromWF and

toWF may be used by the infrastructure to validate whether the method is allowed to be called

and to keep track of the history of the method call for error processing. They are used by the

infrastructure when creating log messages to indicate the source of an error.

It’s up to the infrastructure provider whether the handle ID is an index into a table, or an address

of a structure, or a hash value used to look up the information that the infrastructure uses to

access the application, device, file, or queue. The only restriction imposed by STRS is that a

negative value indicates an error. It is the responsibility of the infrastructure to keep any

additional information needed to intelligently populate the error logs. Each application is

informed of its own handle ID and handle name using APP_Instance. The application uses its

own handle ID as the fromWF argument to most STRS infrastructure-provided methods. There

should be a handle ID for the infrastructure (or portions thereof) to indicate when the

infrastructure is the source for error messages.

After considering the functionality required by the use cases and OMG SWRADIO profile, there

needed to be APIs to standardize additional portions of the software. Therefore, APIs were

created for devices, message queues, files, and timing. Some others were left to POSIX to

implement.

4.5 Configuration File Requirements

Configuration files are required as a self-documenting way for the STRS infrastructure to start

STRS applications into a known state to support the Level 1 requirements for remote partial

configuration, reconfigurability, adaptability, automated system recovery and initialization, and

multiple waveform support. The basic requirement derives from the need for each component to

start in a known state. Requirement STRS-1 produces a known state for the platform. Using

application configuration files produces a known state for the applications. The infrastructure

configuration files are optional but are suggested to allow for evolution of the hardware and

software in a standard way.

Using an application configuration file addresses the variability regarding what resources may be

needed by the application, what variables need to be defined, and what state changes need to be

made. There isn’t necessarily a one-to-one correspondence between an application and a

loadable file. A loadable file can contain parts of multiple applications; likewise, an application

can span multiple loadable images. In a common case, a single application has both a GPP part

and an FPGA part. In the case of an OS like Real-Time Executive for Multiprocessor Systems

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

16 of 119

(RTEMS), a free open-source RTOS designed for embedded systems, which does not support

dynamic loading, there’s no need to include separate information on the GPP part of an

application, since the build process does not make a loadable image for the application alone,

separate from the infrastructure.

The application configuration files are required to allow for the same application to be

configured for different situations. For example, the environment may vary over the life of the

radio and parameters may need to be adjusted accordingly. Another example might be allowing

the original frequencies defined in a configuration file to be updated to avoid interference. It is

less risky to send a short data file to the radio than to send a full software load. A current

example for one of the SCaN Testbed SDRs is that the software and/or configurable hardware

design has to remain stable at a certain point in the development process so that code review and

test can be completed. However, there are parameters that are environmentally sensitive and can

only be determined by testing under environmental conditions that simulate the conditions of

space. These parameters are determined and entered into the application configuration file. A

new application configuration file is then added to the SDR, but the software and configurable

hardware design used for the code review and test remain unchanged.

When the waveform application is started, the state, resources, and the configurable parameters

are specified in a configuration file so that any reinitialization is predictable. For example, if the

radio needs to cycle power to correct some glitch, it should be able to do so and restart the

application without intervention. STRS-101 requires the inclusion of “initial or default values for

all distinct operationally configurable parameters.” The “operationally configurable parameters”

were those that could be configured using the STRS_Configure/APP_Configure commands

instead of using subordinate parameters that don’t have to be configured separately or using

merely queryable parameters. For example, if a data item can be initialized in multiple ways,

such as having parameters for both frequency and wavelength, only one would need to be

configured. Also, a parameter could be queryable but not configurable (e.g., temperature,

location, and power consumption).

The reasons for using XML for the predeployed application configuration files are as follows:

a. Using XML allows the data to have a standardized format that is easily created, read,

and used by multiple entities.

b. XML is easy to learn, doesn’t require much overhead, and is a W3C free and open

standard.

c. Using XML saves time and money since tools already exist for displaying, editing,

validating, parsing, and other functions.

d. Using XML allows the data to be self-documenting.

e. An exact format for the predeployed configuration files is not specified because the

infrastructure for each vendor may need different information to start an application. The data in

the application configuration files may not always be just name/value pairs.

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

17 of 119

f. Using XML allows for hierarchical as well as sequential data. Using hierarchical data

allows for greater complexity. Using XML does not hinder the data from being used sequentially

or in a specific order.

g. STRS-101 facilitated requiring specific information in the predeployed configuration

file in XML that is easily transformed so that only the relevant subset appears in the deployed

configuration file. The minimum data required are identification, any resources loaded, any

parameters configured, and ending state information.

h. Using XML allows the STRS integrators to be able to verify that the data they enter

meet some specified criteria so that the creation of the deployed configuration file will work

properly.

i. The XML file is not intended for direct automatic processing. The items in STRS-101

are a somewhat minimal set of information that is useful for identifying and categorizing the

application as well as for providing values for initialization. Since there is no content specified

for the deployed configuration file, there can be no objection to categorizing the memory used

and specifying the size in the XML file, and forcing the STRS integrator to do the computation

to see if the application will fit. In the future, a particular platform could theoretically use the

size information in the deployed format to help instantiate an application; however, that is not

required by the architecture.

j. STRS began as an approach to adapt SCA for NASA space applications. A waveform

application was implemented using SCA and from that, it was apparent that having CORBA and

an XML parser in the radio added quite a lot to the complexity, size, and weight. STRS

eliminated the need for CORBA, dynamic features, and an XML parser in the OE. So, the best

resolution was having XML to start with and a processed file to deploy on the radio.

k. The SCA’s properties files in XML could be used for STRS with minimal changes.

An Extensible Stylesheet Language Transformation (XSLT) could be written to transform an

SCA properties file into any deployed format.

l. Using XML allows validation of input values. Part of the compliance testing is to

verify that the configuration file follows the format specified in the schema. Using an XML

schema saves NASA from having to keep a different validation tool for each vendor.

m. Using XML allows data to be labeled with tags and attribute names so that the data

are more easily validated and changed. The minimum was specified for the format of the

application configuration files so that each vendor could use the format appropriate to that

vendor’s implementation. For example, here are some alternatives for a “wait” command in

XML:

(1) <command>wait 100</command>

(2) <wait>100</wait>

(3) <wait delay=”100”/>

(4) <wait delay=”100” units=”microseconds”/>

(5) <wait> <delay>100</delay> <units>microseconds</units> </wait>

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

18 of 119

Validation is difficult for alternative (1) using a schema. When “100” is separately

identified, it is easier to validate. When “100” is labeled as a delay, it is easier for

multiple entities to identify and modify. When the “100” is labeled as a delay in

microseconds, it is even easier for multiple entities to identify and modify.

XML 1.0 is specified because the http://www.w3.org/ standards state that even though XML 1.1

is the current version, “You are encouraged to create or generate XML 1.0 documents if you do

not need the new features in XML 1.1.” Furthermore, when using XML version 1.1 in the

commercial-off-the-shelf (COTS) product NASA used for testing, XMLSpy, an error was

obtained.

To avoid the drawback of requiring an XML parser to be part of the radio, the STRS allows the

configuration files to be preprocessed into a simpler form. Although XSLT is suggested in

NASA-STD-4009 as a simple mechanism for this transformation, it is not required.

Alternatively, the preprocessing could be handled by a program or script. Although a manual

process using a text editor is not ruled out by requirement STRS-103, an automated process is

preferred.

4.6 Roles and Responsibilities

For STRS, roles are specified as abstractions for the responsible organizations. The roles and

corresponding organizations are expected to change at different stages of the radio’s life cycle.

For example, a developer or provider of some component may act as an STRS integrator for that

component and other components at a subsequent stage of production. Then that STRS integrator

may act as a provider for the next stage. NASA’s goals are to promote vendor independence,

scalability, flexibility, and extensibility, while specifying the smallest number of clearly defined

roles possible.

The basic roles that NASA-STD-4009 defines are the STRS platform provider, who delivers a

platform upon which STRS applications can be executed, an STRS application developer, who

provides the desired functionality in the form of an STRS application, and an STRS integrator,

who is responsible for integrating the parts to work together. The STRS platform provider could

subcontract for hardware and software, but the responsibility for coordination, integration, and

delivery of the infrastructure and related artifacts would reside in one STRS platform provider

organization.

The STRS platform provider would usually act as STRS application developer and STRS

integrator for at least a sample application. The roles and associated products are depicted in

figure 1, Roles and Products.

The roles could have been broken down differently, allowing for various combinations of

providers and integrators that could be very complex. Some suggested roles were as follows:

a. Application developer or provider.

b. Application integrator (OE + applications).

c. Configurable hardware design provider.

http://www.w3.org/

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

19 of 119

d. HAL/board support package (BSP)/drivers provider.

e. Hardware integrator.

f. Hardware parts supplier.

g. Infrastructure provider.

h. Kernel integrator (OS + POSIX + HAL).

i. OE integrator (OS + POSIX + HAL + infrastructure).

j. OE provider (OS + POSIX + HAL + infrastructure).

k. Operator.

l. OS provider.

m. Platform integrator.

n. Platform provider.

o. POSIX provider.

p. Radio integrator (OE + applications).

q. Radio operator (concerned with the mechanics of commanding the radio).

r. Spacecraft operator (concerned with the functionality of the radio in the larger. sense

of including ground operations, experimenters; i.e., consumers of the data flowing through the

radio).

s. System integrator (the entity that puts the radio into a system).

Some of these roles are duplicates. Some of these roles overlap. There were multiple

interpretations for some of the roles, causing confusion. Therefore, the roles were simplified.

Although a few operator roles were suggested, the operator roles have no STRS requirements, so

these roles were not included. The operator roles are required for specific missions or projects

rather than for the STRS architecture. There are no STRS requirements for specific external

commands and how the commands and data get to the STRS radio. There are no STRS

requirements for a specific process for an operator to turn the radio on and off, send

configuration commands, consume and source data, deal with configuration management of

software uploads, and other functions. There are no STRS requirements for the radio link

parameters and for the actions of the experimenters and consumers of the data flowing through

the radio. These types of requirements are mission-specific and have to be included in the

requirements for the particular mission or project, which are in addition to NASA-STD-4009

requirements.

Document preparer roles and reviewer roles are not included, because STRS has no requirements

concerning the process by which the documents are generated. There will be mission or project

requirements for additional roles (including stakeholders) not mentioned here, for which STRS

has no requirements.

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

20 of 119

Figure 1—Roles and Products

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

21 of 119

5. HOW TO USE STRS APIs

This section contains recommendations and general information about how some operations

would usually be performed using the STRS APIs.

5.1 How to Associate FPGA with an STRS Application

Since the FPGA(s) may be named differently on different platforms, the name of the FPGA used

in an STRS application (GPP code) should be a configurable attribute, with its value set in the

configuration files. Since the handle identifiers (IDs) are different on each platform, handle

names should be used to obtain the handle ID with STRS_HandleRequest().

5.2 How to Load FPGA

An FPGA may be loaded directly by the infrastructure when it parses the configuration file, if

supported, or may be loaded by an STRS_DeviceLoad call from the application GPP code. If the

latter method is used, the name of the bitstream file should also be a configurable attribute set

with the APP_Configure method. The STRS_HandleRequest method should be called to obtain

the handle ID for the FPGA Device, and then the STRS_DeviceLoad method should be called

for the FPGA to load the bitstream file. These STRS infrastructure calls may be performed in the

APP_Configure directly or in the APP_Start method, as appropriate.

5.3 How to Set Attributes

An FPGA may be configured directly by the infrastructure when it parses the configuration file

or by an STRS_Configure call to the STRS Device for the FPGA call from the application GPP

code. If the latter method is used, the handle name of the FPGA Device should also be a

configurable attribute set with the APP_Configure method. The STRS_HandleRequest method

should be called to obtain the handle ID for the FPGA Device, and then the STRS_Configure

method should be called for the FPGA Device to configure the FPGA. These STRS

infrastructure calls may be performed in the APP_Configure directly or in the APP_Start

method, as appropriate.

5.4 How to Get Attributes

Not all specialized hardware can be interrogated for its configuration; however, the infrastructure

or the application may maintain any configuration data needed. The application has to implement

APP_Query and, if appropriate, it should call the STRS_HandleRequest to obtain the handle ID

for the FPGA followed by an STRS_Query call to the STRS FPGA Device to obtain the

configuration data from the FPGA.

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

22 of 119

5.5 How to Push Packets

To push packets from an application, to a device, queue, file, or another application,

STRS_Write is used. For generating packets in the same application used to send the packets,

APP_Write may be used directly. If an application acts as a sink of packets pushed, it has to

implement APP_Write, #include "STRS_Sink.h"; and if C++, the class has to implement

STRS_Sink.

5.6 How to Pull Packets

To pull packets from a device, queue, file, or another application, STRS_Read is used. To pull

packets from another module in the same application, APP_Read may be used directly. If an

application acts as a source of packets pulled, it has to implement APP_Read, #include

"STRS_Source.h", and, if C++, the class has to implement STRS_Source.

5.7 How to Process Errors

When a call to an STRS method is made, a variable of type STRS_Result is usually returned. To

ensure consistent testing for errors, where an error is usually a negative value, STRS_IsOK tests

that variable of type STRS_Result for errors, and returns a true or false boolean variable. The

value returned from STRS_IsOK is true when there is no error and false when there is an error so

that appropriate action may be taken.

When an error is detected in the operation of the application, STRS_Log should be invoked

using an error queue handle ID (STRS_FATAL_QUEUE, STRS_ERROR_QUEUE, or

STRS_WARNING_QUEUE), and a descriptive message. The error queue handle ID can be

determined using STRS_GetErrorQueue with the error return value as an argument. The error

queues are monitored and passed to the infrastructure for further action.

5.8 How to Make Multiple Instances of an Application

To create multiple instances of an application, be sure that the application is reentrant and that all

pertinent data are configurable. Two configuration files have to be created, specifying a different

handle name for each instance. When using C language applications, there may be method name

duplication, which is discussed further in section 6.10, C Language Naming Duplication.

5.9 How to Map Memory Locations

Mapped memory locations should be defined in the configuration files related to the configurable

attributes for the devices. The memory locations should not be hard-coded because hard-coding

would limit the independence of the software and configurable hardware design. In the example

shown for MEMORYMAP and MAPVALUE in NASA-STD-4009, Appendix A, there is a base

name, associated location, and size. This is illustrated in figure 2, Memory Map. The individual

item locations are specified relative to the base name in addressable storage units. The location

may also have a bit offset and bit length. Then, when the configurable item is modified, the

mapped location is used.

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

23 of 119

Figure 2—Memory Map

5.10 When to Use STRS_Log and STRS_Write

The two STRS infrastructure methods, STRS_Log and STRS_Write, have similar functionality

except that STRS_Log adds a time stamp and possibly other identifying information. These

methods should never be mixed for a given target. An STRS application developer should only

write to the error queues using STRS_Log because the errors need to be identified further

(STRS-54, STRS-55, STRS-56) and never with STRS_Write. Similarly, an STRS application

developer should only write to the telemetry queues using STRS_Log because the telemetry data

need to be identified further (STRS-57) and never using STRS_Write. Futhermore, the error

queues are monitored for faults. An STRS application developer should only use STRS_Write to

write buffered data to another application, service, device, file, or queue that does not require

additional information added.

5.11 Difference Between Run Test and Ground Test

A run test is invoked using STRS_RunTest and implemented by APP_RunTest. A ground test is

invoked using STRS_GroundTest and implemented by APP_GroundTest. A run test is invoked

before or after deployment to determine whether the component is performing correctly. A

ground test is generally invoked before deployment to perform unit testing and calibration. The

ground tests help to automate and evaluate those tests. The term ground test was originally used

to indicate testing for a satellite system, which is performed on the ground before launch.

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

24 of 119

Ground test may be invalid after deployment and indicates that such tests are normally

completed before deployment and are not repeated thereafter. If allowed by the project and the

ground tests will not be repeated after deployment, then the ground test code may be removed

prior to deployment. The run tests and ground tests were separated because NASA generally

requires significant testing prior to deployment; for example, vibration testing, environmental

testing, radiation testing, etc.

5.12 When to use Start/Stop, Load/Unload, and Open/Close

The commands STRS_Start, STRS_DeviceLoad, STRS_DeviceOpen are specified in NASA-

STD-4009 along with the reverse commands, STRS_Stop, STRS_DeviceUnload, and

STRS_DeviceClose. The following describes the interaction of these commands under various

common circumstances.

Initialize is used while the application is in the STRS_APP_STOPPED mode to set the

application to a known initial condition. The application may be configured before and/or after

initialize. Start is used to begin normal processing and change the state to

STRS_APP_RUNNING. If any part of the application is in specialized hardware, that portion

needs to be loaded before starting. To load an STRS Device, the Device has to be opened first.

It is suggested that any part executing in specialized hardware not begin execution upon being

loaded but rather during the start process. Similarly, it is suggested that stopping execution

doesn’t require any specialized hardware to be unloaded. Therefore, greater control is given to

the application software for processing commands to start and stop waveform application

operation in order to take advantage of windows of opportunity for execution as well as to

promote consistency in control of the radio. Only certain allowed items may be configured after

starting.

It is suggested that the STRS OE use configuration file(s) to start-up an application to a known

initial state. STRS encourages that changeable data be specified in configuration files, rather

than coding the data as constants within the application or device, so that greater portability and

ease of modification is achieved. The STRS OE may process a configuration file to instantiate,

open and load the device, initialize, configure, and start the application, or use any subset of

these as determined by the project/mission and STRS platform provider.

As an example, the following use case is written for a waveform application using specialized

hardware to send signals over the air to another radio assuming that the specialized hardware

device has already been instantiated and initialized by the OE:

1. Radio receives a command that a new waveform application is needed. This may be

multiple commands received or one command that invokes a series of operations. In

either case, those operations follow.

2. OE checks for availability of the application and memory to instantiate it.

3. OE instantiates application (STRS_InstantiateApp).

4. OE initializes application (STRS_Initialize).

5. OE opens specialized hardware device (STRS_DeviceOpen).

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

25 of 119

6. OE loads specialized hardware device (STRS_DeviceLoad).

7. OE configures application (STRS_Configure).

8. OE starts application (STRS_Start).

The use case for the reverse process is as follows:

1. The radio receives a signal to stop and remove the application. This may be multiple

commands received or one command that invokes a series of operations. In either case,

those operations follow.

2. OE stops the application (STRS_Stop).

3. OE unloads the specialized hardware device (STRS_DeviceUnload).

4. OE closes the specialized hardware device (STRS_DeviceClose).

5. OE releases resources for application (STRS_ReleaseResources).

If there is no specialized hardware device, the steps pertaining to such a device may be

eliminated. If the application merely performs calculation, start may mean perform the

calculation and, before each calculation, the data is reconfigured. Alternately, start may mean

ready to perform the calculation and start invokes a thread that loops waiting for new data so that

each time new data is obtained, the computation is performed. Similarly, for a waveform

application, start may mean to tell the specialized hardware device to begin processing signals or

alternately, start may invoke a thread to perform the communication functions. A separate thread

is used so that other commands may be processed independently.

6. QUESTIONS AND ANSWERS

The following questions have been asked by implementers of STRS-compliant platforms and

applications and are included to provide additional insight for readers who might have similar

questions.

6.1 Fault State and Use of the ERROR, WARNING, and FATAL Queues

NASA-STD-4009 does not specify how the fault state is set or detected. The fault state may be

determined in a number of ways as specified by the mission or project. When STRS_Log sends a

message to the error queue or fatal queue, it is assumed that there is an error or fatal error in that

component and that the fault state is set accordingly. The fault state could also be set when a

Health Manager or Watchdog Timer detects a problem (neither of which is required). The fault

state could also be detected when the telemetry returns improper values. The fault state as shown

in NASA-STD-4009 in the state diagram (figure 15, STRS Application State Diagram) implies

that the radio detects and possibly recovers; however, it could be designed so that the fault state

is kept by the flight computer or equivalent.

The use of the ERROR, WARNING, and FATAL queues are expected to be defined more

closely by the mission or project. The three relevant types of queues are as follows:

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

26 of 119

a. The STRS_FATAL_QUEUE is the queue used when an STRS_FATAL error is

encountered. STRS_FATAL_QUEUE denotes the queue for a nonrecoverable error in an attempt

to capture information about the situation in a logging trail used to reconstruct the original cause

of the error. Furthermore, sending a message to the STRS_FATAL_QUEUE is one way of

initiating an orderly shutdown and reboot of the radio to a known state. The processing for a fatal

error could imply turning off the heartbeat; that is, rebooting the radio and, if that doesn’t work,

reloading the software and/or configurable hardware design. It could imply running additional

diagnostic tests. It is up to the mission to define whether there are alternative ways of rebooting

under different circumstances, such as after trying three times. It may make a difference if the

problem is overheating or if a bit has been changed in the radio so that it doesn’t work properly.

b. STRS_ERROR_QUEUE denotes the queue for a recoverable error. The most likely

reason is an invalid set of configuration parameters. The recovery would be to get a valid set of

configuration parameters.

c. STRS_WARNING_QUEUE denotes the queue for a recoverable error that has little

or no effect on the operation of the radio. The most likely reasons are trying to run a test in a

state for which the test is not allowed, trying to configure or query a parameter when the value is

not available in that state, or trying to run APP_Start when the application is already started.

6.2 Message Queues Need Clarification

The STRS doesn’t require implementing messaging queues using the observer/publish-subscribe

design pattern where the class inherits a notify method. The STRS is designed to work in C

without inheritance, but the idea is that the publisher doesn’t know the identity of the subscriber

such that one or more applications or devices can funnel data to one or more different

applications, devices, files, or queues. Figure 3, Sample Publisher-Subscriber Sequence Diagram,

is just one possibility for a sequence diagram showing the creation and possible use of a

messaging queue using one form of the publisher-subscriber paradigm:

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

27 of 119

Figure 3—Sample Publisher-Subscriber Sequence Diagram

Detecting circularity and duplication is difficult with just the sequence diagram shown without

adding additional methods. Circularity is where the message published eventually ends up back

at the original publisher and is sent again in an infinite loop. Duplication is where the message

published ends up at the same destination twice.

There is a problem of notification when it is a SIMPLE queue. STRS_Write will put the message

on the queue, but when does STRS_Read obtain it from the queue and when does the message

get deleted from the queue? Also, can the queue fill up so that further messages are rejected? The

resolution to the message-queuing behavior is not included in the current version of NASA-STD-

4009 but has to be covered by the specific design for the mission or project.

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

28 of 119

6.3 What is an STRS Device?

An STRS Device is shorthand for an entity that responds to both STRS application methods and

STRS Device methods. For example, an FPGA may be implemented as an STRS Device such

that it may be loaded, configured, started, stopped, unloaded, and so forth, using the

corresponding STRS infrastructure Device Control API. There is no requirement that an STRS

Device actually exists as separate software. It could be implemented as a subsystem within the

infrastructure without defining a separate class. In NASA-STD-4009, section 7.3.6, STRS

Infrastructure Device Control API, STRS Devices are discussed but are not required. There was

only the suggestion that they be implemented as shown in figure 4, STRS Application/Device

Structure, which is a copy of figure 14, STRS Application and Device Structure, of NASA-STD-

4009.

The STRS infrastructure Device Control API is used instead of POSIX input/output (I/O)

methods such as open, close, read, write, and so forth, to promote portability by standardizing the

device interface for hardware devices where POSIX methods cannot be implemented. Currently,

the POSIX methods can be used when all the device methods are in the same application.

Another reason the Device Control API is required is to align with the Joint Tactical Radio

System (JTRS)/SCA and the OMG/SWRADIO, which had devices of various types defined. The

methods load and unload, shown in figure 4, were adapted from those standards. Because of the

C language interface requirement, inheritance for various types of devices is not practical. Also,

accessing the STRS Devices using a handle ID gave more flexibility in configuring a data source

or sink. For example, an application might be used to transmit data over the air obtained from a

data source that might be configured as an application, device, queue, or file. Similarly, an

application might be used to receive data over the air and send it to a data sink that might be

configured as an application, device, queue, or file. Thus, an STRS Device may be used either to

distribute functionality over multiple waveform applications or to abstract hardware

functionality, further giving greater flexibility. An STRS Device is similar to the bridge pattern

used to separate an abstraction from its underlying implementation.

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

29 of 119

Figure 4—STRS Application/Device Structure

6.4 How to Configure and Control SDR Hardware?

The configuration and control of the SDR hardware depends on where the intelligence exists;

that is, which software component knows how to configure and control SDR hardware? A

combination of software components (waveform application, STRS infrastructure, STRS Device,

and HAL) knows how to configure and control SDR hardware.

a. The application knows about data values, the STRS Device knows about mappings in

the GPP, and the HAL knows about how to take values and transfer them to the hardware.

b. The STRS application should be the target component for the parameters it controls

and could pass to an STRS Device those parameters that need to be passed to the HAL.

c. STRS Application.

(1) The STRS application would control what data are configured.

(2) The STRS application has limited intelligence on how and where to enable the

application to be portable.

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

30 of 119

(3) The STRS application knows the handle ID of the STRS Device to use.

(4) For example, an STRS application processes FREQUENCY, converts from

floating point to integer in a format that is recognized by the STRS Device, and

calls the appropriate method to configure the STRS Device.

d. STRS Device.

(1) The STRS Device controls how data get to the FPGA or other hardware

(2) The STRS Device knows how to send data to the proper register in the FPGA

using the HAL.

(3) The HAL may be external functions or inline functions that know the mappings

from data addresses to registers in the FPGA.

e. STRS Infrastructure.

(1) The STRS infrastructure reads the configuration files or receives an external

command and calls the STRS_Configure method for the appropriate target

component.

(2) The STRS_Configure in the infrastructure calls the corresponding

APP_Configure within the target component.

6.5 STRS Infrastructure Methods Do Not Belong to Any Class

The STRS infrastructure-provided methods beginning with “STRS_” do not belong to any class,

since they have to be the same when called from C language implementations. If one is coding in

C++, these methods should be defined using extern "C" {...}.

In NASA-STD-4009, the STRS infrastructure provides the STRS infrastructure-provided

Application Control API that supports application operation using the STRS Application-

provided Application Control API in section 7.3.1. The STRS Infrastructure-provided

Application Control API methods (section 7.3.2) that begin with “STRS_” correspond to the

STRS Application-provided Application Control API methods (section 7.3.1) that begin with

“APP_” and are used to access those methods. The STRS infrastructure implements these

methods for use by any STRS application or by any part of the infrastructure that is desired to be

implemented in a portable way.

Since the C language is optional for STRS applications (see STRS-16, 18, 19), the STRS

Application-provided application control methods beginning with “APP_” may belong to a class.

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

31 of 119

6.6 Explain Clocks and Timers

Clocks/timers are used for the following:

a. Coordinating external events.

b. Providing time for real-time functions in the GPP.

(1) Some functions currently in FPGA will be transitioned from FPGA to GPP when

the GPPs are fast enough and capable enough to handle the signal processing

functionality.

NASA-STD-4009 is designed to allow a clock/timer to be an extension of an STRS Device so

that the functionality can be embedded in specialized hardware, if necessary. Multiple timers are

only defined when they are required by the mission. An offset is usually specified to ensure that

the clock is monotonically increasing from a previous power reset or is synchronized with

another clock/timer.

Normally each clock/timer has a base time, usually measured from when it is turned on. An

offset may be used to keep the time monotonically increasing with each power cycle. An offset

may also be used to coordinate with external events. The timing of external events, such as

another satellite coming over the horizon or the availability of experimenters, may be used to

power parts of the radio off and on so that the radio optimizes its power consumption and

availability.

6.7 FPGA Partial Reconfiguration

Partial reconfiguration is the process of configuring selected areas of an FPGA after its initial

configuration. Xilinx indicates that a bitstream file can contain all the configuration commands

and data necessary for partial reconfiguration. Therefore, STRS_DeviceLoad will work, and no

new methods need to be defined at this time.

6.8 Compliance Testing

STRS compliance of a vendor- or partner-provided SDR is assessed by source code inspection,

document inspection, configuration file inspection, adding an application containing a reference

to each STRS infrastructure method and testing that application. The name of that application is

the STRS Command and Compliance, also known as WFCCN. WFCCN may be compiled with

an STRS infrastructure to determine whether or not there are any missing constants, typedefs, or

structs.

Since many of the STRS requirements are source code requirements, a standard test suite cannot

test them fully. Since STRS is designed to allow multiple vendors to work together, certain

source code artifacts have to be made available so that a subsequent STRS application developer

or STRS integrator can use the methods, constants, typedefs, and structs required. The following

is an example of a problem that WFCCN cannot be used to find: One vendor used noncompliant

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

32 of 119

method signatures with int instead of STRS_Buffer_Size, but on that platform, both integer items

compiled as the same type. Using a type that happens to correspond to the vendor’s

implementation of an STRS type is not necessarily portable to the next platform.

The STRS compliance could be evaluated at and by each vendor or partner and the results shared

and discussed in one or more workshops at various points in the project life cycle. This

alternative is to be decided by the mission or project. A full release and delivery of all STRS OE

source code is not required in order to perform STRS compliance testing. Each vendor or partner

should inspect his or her own software and documents before delivery. However, NASA found

noncompliances in the deliverables for each SCaN Testbed partner.

Once the STRS radio artifacts are tested for STRS compliance, any noncompliances will be

reported to the supplier and the mission or project, along with any suggestions. It is the

responsibility of the mission or project to decide whether to grant deviations and waivers for any

noncompliances that are not resolved.

6.9 Configuration Files Examples

To help the reader and implementer of the STRS architecture understand the development and

use of the configuration files described in NASA-STD-4009, Appendix A, Example

Configuration Files, an example of a configuration file based on that format was developed. This

example of a configuration file, for a sample application WF1, is shown in this Handbook in

figure 5, Example of Predeployed Configuration File for NASA-STD-4009, Appendix A.

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

33 of 119

Figure 5—Example of Predeployed Configuration File for NASA-STD-4009, Appendix A

Here is the explanation, line by line:

(1) XML declaration.

(2) Extensible Stylesheet Language (XSL) file declaration.

(3) Comment.

(4) Open tag STRS and corresponding XML schema declaration.

(5) Open tag CONFIGURATION.

(6) Comment.

(7) Open tag WAVEFORM.

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

34 of 119

(8) Tag WFHANDLENAME containing WF1a as the handle name.

(9) Tag WFNAME containing WF1 as the class name.

(10) Tag WFACCESS with WF1 having no READ/WRITE access; that is, neither APP_Read

nor APP_Write are implemented.

(11) Tag WFSTATE with final state for WF1a as STRS_APP_INSTANTIATED.

(12) Comment.

(13) Comment.

(14) Comment.

(15) Open tag LOADFILE.

(16) Tag LOADFILENAME containing the path to load WF1.out.

(17) Tag LOADTARGET containing SELF to indicate that it is loaded on the current GPP.

(18) Open tag LOADMEMORY.

(19) Tag MEMORYSIZE indicating that the size is 134K bytes.

(20) Tag MEMORYUNITS indicating that the size is measured in bytes.

(21) Close tag LOADMEMORY.

(22) Tag LOADTHREADTYPE to indicate that POSIX threads are used.

(23) Tag LOADTHREADTAG containing W1 as the name of the thread.

(24) Tag LOADTHREADPRIORITY containing 50 as the priority of the thread.

(25) Close tag LOADFILE.

(26) Open tag LOADFILE.

(27) Tag LOADFILENAME containing the path to WF1.bit.

(28) Tag LOADTARGET containing FPGA to indicate that it is loaded on the FPGA.

(29) Open tag LOADMEMORY.

(30) Tag MEMORYSIZE indicating that the size is 2670K bytes.

(31) Tag MEMORYUNITS indicating that the size is measured in bytes.

(32) Close tag LOADMEMORY.

(33) Close tag LOADFILE.

(34) Open tag ATTRIBUTE.

(35) Tag NAME containing A.

(36) Tag VALUE containing 5 as the value for A.

(37) Close tag ATTRIBUTE.

(38) Open tag ATTRIBUTE.

(39) Tag NAME with B.

(40) Tag VALUE containing 27 as the value for B.

(41) Close tag ATTRIBUTE.

(42) Open tag ATTRIBUTE.

(43) Tag NAME with C.

(44) Tag VALUE containing “Non-numeric” as the value for C.

(45) Close tag ATTRIBUTE.

(46) Close tag WAVEFORM.

(47) Tag INCLUDE containing the path to additional items to process.

(48) Close tag CONFIGURATION.

(49) Close tag STRS.

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

35 of 119

The example in NASA-STD-4009, Appendix A, splits the formatting into three parts to group

the information logically. The following explanations further clarify the necessity and intent of

Appendix A.

a. There is no necessity or requirement for splitting the platform configuration files into

hardware and software parts as shown in NASA-STD-4009, Appendix A.1 and A.2. Splitting up

the description this way was just a logical way to organize the description.

b. In NASA-STD-4009, section 9.3, Application Configuration Files, says “…the

format of the application configuration file should be a subset of the format of the platform

configuration file.” The purpose is to allow some applications and services to be instantiated at

boot-up or restart. The application configuration file format as a subset of the platform

configuration file format is shown in Appendix A.3 of NASA-STD-4009. However, the schema

would normally have the platform configuration information pruned to create an independent

application configuration file.

6.10 C Language Naming Duplication

There will most likely be more than one application in an STRS radio. In the C language, there is

no namespace support as in C++ or other object-oriented (OO) languages that scope the member

functions to the class. Thus, there will be multiple implementations of the same STRS

Application-provided API method names, starting with “APP_”, one in each implementation of

an application.

One technique to allow multiple “instances” of C language applications could use APP_Instance

to return a pointer to a table of pointers to the methods. Then, the OE could use these method

locations to call the methods. This technique and variations are described in NASA/TM—2011-

216948, Symbol Tables and Branch Tables: Linking Applications Together. The techniques

specify the creation of a branch table or indirect address table for each application. To suppress

the common method names, compile and link each application separately. When the table is

registered with the OE, the OE could use the table to call the appropriate method.

One technique to allow multiple “instances” of C language applications with the same method

names depends on loading new applications one at a time, sequentially, and capturing the new

method locations instead of the old at the appropriate point in the process. The method locations

are saved in a structure associated with the STRS application and the appropriate method is

called as needed. The flow chart shown in figure 6, Obtain Array of Pointers to Methods, gives

some highlights. Note that, besides the method illustrated in figure 6, there are other ways of

creating an array of pointers to the C language methods. This array of pointers may be used to

invoke those methods later.

http://ntrs.nasa.gov/search.jsp?N=0&Ntk=All&Ntt=symbol%20tables%20and%20branch%20tables&Ntx=mode%20matchallpartial
http://ntrs.nasa.gov/search.jsp?N=0&Ntk=All&Ntt=symbol%20tables%20and%20branch%20tables&Ntx=mode%20matchallpartial

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

36 of 119

Figure 6—Obtain Array of Pointers to Methods

The technique demonstrated in figure 6 might not be possible on a platform that needs

everything to be compiled and linked together ahead of time. Another technique would be to use

message queuing to communicate between independent applications, but this technique might be

awkward to use in practice.

6.11 Sequence Diagrams Depicting STRS API Calls

The following sequence diagrams depict the relationship between the STRS infrastructure-

provided Application Control API beginning with “STRS_” and the corresponding STRS

Application-provided Application Control API beginning with “APP_.” The methods described

in NASA-STD-4009 for figure 15, STRS Application State Diagram, are those that cause a

change in state. In this Handbook, the methods depicted in figure 7, Simplified Sequence

Diagram for STRS_InstantiateApp, and figure 8, Simplified Sequence Diagram for

STRS_AbortApp, and figure 9, Simplified Sequence Diagram for STRS_Configure, contain both

those that cause a change in state as well as those that do not. In this Handbook, since an STRS

Device inherits all the methods from an STRS application, as shown in figure 4, the methods in

figures 7, 8, and 9 for STRS applications could apply to STRS Devices as well. In figures 7, 8,

and 9, “Command Source” is used for the object, internal to the radio, either an STRS

application or part of the OE, which calls the STRS infrastructure methods.

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

37 of 119

Figure 7—Simplified Sequence Diagram for STRS_InstantiateApp

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

38 of 119

Figure 8—Simplified Sequence Diagram for STRS_AbortApp

Figure 9—Simplified Sequence Diagram for STRS_Configure

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

39 of 119

A sequence diagram for each row in table 1, Substitutions for Figure 9, can be made from the

diagram in figure 9, by substituting the “COMMAND SOURCE TO OE” method in place of

STRS_Configure and the corresponding “OE TO STRS APPLICATION” method in place of

APP_Configure:

Table 1—Substitutions for Figure 9

COMMAND SOURCE TO OE OE TO STRS APPLICATION

STRS_GroundTest APP_GroundTest

STRS_Initialize APP _Initialize

STRS_Query APP _Query

STRS_Read APP _Read

STRS_ReleaseObject APP _ReleaseObject

STRS_RunTest APP _RunTest

STRS_Start APP _Start

STRS_Stop APP _Stop

STRS_Write APP _Write

6.12 Why are APP_Instance and APP_Initialize Separate?

The APP_Instance and APP_Initialize methods are often used together successively but should

not be combined because they have different functionality. The separation of APP_Instance and

APP_Initialize supports encapsulation. It allows configuration to occur before APP_Initialize. In

figure 7, STRS_InstantiateApp calls APP_Instance and then it may call APP_Configure and

APP_Initialize, as specified by the configuration file. STRS_InitializeApp may do everything in

one call or additional calls may be needed thereby giving the greatest flexibility. Also note that

APP_Instance is a convenience function containing a constructor and saving any application

identifying information.

6.13 Why Start with SCA?

The Wireless Innovation Forum (formerly SDR Forum) and SWRADIO by the OMG put so

much effort into SCA, that it was decided to investigate these architectures. The result of that

investigation was that the CORBA requirements and XML parser requirements took up a lot of

memory and machine cycles but were not really necessary for NASA. One study showed that

eliminating CORBA and an XML parser reduced the memory footprint by an order of

magnitude. So, to save on SWaP for NASA’s space platforms, it was decided to create a similar

STRS architecture without those disadvantages. After looking at use cases for NASA radios,

very similar functionality to the SCA and SWRADIO was decided to be necessary. Similar

method names to the application method names in SCA and SWRADIO were chosen for STRS.

The reasoning was that it would be easy to take advantage of the many man-years of effort that

had gone into defining those architectures, the Wireless Innovation Forum could comment on the

STRS architecture due to the similarities, and that SDR design tools might be easier to

use/generate for STRS applications.

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

40 of 119

A key recommendation from the Forum’s space working group was to align with the OMG

SWRADIO specification where possible. To that end, mappings from the OMG SWRADIO PIM

to the STRS platform-specific model (PSM) were discussed. There were only minor differences

in the Space PIM that could map into STRS from OMG’s SWRADIO PIM that mapped into

SCA. A quote from the Forum’s study:

The SDR Forum recommended that the STRS align with the SDR Forum, the

OMG, and the IEEE SCC41 for purposes of distributing the burden and cost of

non-recurring engineering (NRE) across NASA and all consortia members

contributing to the STRS, and to further broaden and enhance the quality of the

implementation and deployment of STRS-based standards.

NASA’s configuration files could be much simpler, because NASA’s radios were less distributed

with no dynamic aspects needed to be specified in the configuration files. Furthermore, it was

decided that by preprocessing any XML configuration files, a much simpler parser could be used

on much simpler data.

6.14 Security for STRS

Security aspects need to be considered for any STRS radio. There are currently no STRS

requirements for security, and it is assumed to be up to the project/mission to define any security

requirements. It was determined that NASA radios typically do not require DO-178B, Software

Considerations in Airborne Systems and Equipment Certification; and red/black

separation. Security is needed to:

a. Verify/validate external commands such that:

(1) They come from the appropriate source (e.g., using data in a CCSDS wrapper).

(2) They have not been compromised (e.g., using encryption, signing, parity bit,

checksum, cyclic redundancy check).

(3) They are in the appropriate format for commands.

This is usually defined by the command and control for the mission and not by STRS.

The security functions should be encapsulated, separate from the external command and

control interpreter, so that the functionality may be changed if necessary, without

affecting the STRS application implementation. This functionality may be invoked by the

STRS OE implementation or as a service for over-the-air command and control.

b. Verify/validate internal commands; i.e., don’t allow the radio to try to do anything risky

or make itself inoperable.

(1) Don’t allow radio to call methods for which the handle ID is inappropriate.

(2) Restricting the radio as to what it can do is left as a possible project/mission

requirement. For example, one might restrict one waveform from aborting any other

waveform. In this case, it is suggested that a table be configured containing allowed

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

41 of 119

or disallowed commands and the associated source(s) handle names and target(s)

handle names for which the command applies such that the table could be used to

validate a command.

(3) Specifying a key to allow the radio to override the restrictions of item “b(2)” is also

left as a possible project/mission requirement. In which case, security keys and an

authentication method is required.

Security requirements are defined by the project/mission and not by STRS. The security

functions of item “b(2)” and item “b(3)” should be encapsulated so that the functionality

may be changed if necessary, without affecting the STRS application implementation.

This functionality may then be invoked by the STRS infrastructure implementation.

6.15 What is Configurable Hardware Design?

The term “configurable hardware design” is used throughout the STRS documentation to signify

the items required to capture the digital logic of the hardware that can be configured remotely,

such as an FPGA. Configurable hardware design includes the items created to document the

design of the hardware including the source code (e.g., very high speed integrated circuits

(VHSIC) hardware description language (VHDL), Verilog) and the loadable files (e.g., FPGA

image).

The term “configurable hardware design” replaces the commonly used term “firmware” in earlier

versions of STRS documentation. Many definitions for firmware, including the latest IEEE

definition, which was written in 1990, state that firmware resides in read-only memory and

cannot be modified. The changing definition of “firmware” would likely lead to confusion, and

a new term was selected for the STRS documentation. Additional terms such as “complex

electronics,” “configurable logic device,” “programmable logic device” and “software” were

considered, but each term was rejected due to potential confusion or implied limitations if the

term was used.

The SDR community is unique in that it uses GPPs and configurable hardware design in a single

application. The term “software” in some contexts of the STRS (and other SDR-related)

documentation may include configurable hardware design. For example, whenever the term

software defined radio is used, both GPP and configurable hardware design are included. The

STRS architecture does not dictate processes or organizational structure for use in developing the

software or configurable hardware design. The project developing the SDR or application has to

dictate the required process.

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

42 of 119

7. STRS REQUIREMENTS, RATIONALE, AND VERIFICATION

METHOD

The following sections address each requirement in turn, displaying the rationale, the related

higher-level requirements, verification method, and other pertinent information, which augment

the general rationale given earlier in this document.

In each section, the title line contains the requirement number and the title of the requirement.

That is followed by the text of the requirement. The rationale describes why the requirement is

needed. The category contains one or more of the summary capabilities from NASA/TM—2007-

215042. The categories are chosen from the following list: adaptability, availability,

extensibility, flexibility, interoperability, portability, scalability, reliability, and reconfigurability.

The traced-from specifies the section numbers in NASA/TM—2007-215042 that apply to this

requirement. The use case specifies the names of the use case sections in NASA/TP—2008-

214813, STRS Software Architecture Concepts and Analysis, that apply to this requirement. The

related to specifies the part of the STRS radio that has to satisfy the requirement where platform

indicates that the hardware and related documentation are tested, OE indicates that the OS and

infrastructure and related documentation are tested, and application indicates that the application

and related documentation are tested. The notes contains additional explanations for the

requirement.

Verification methods are used to show that the requirement has been met. The verification method

is chosen from the following list: Analysis, inspection, observation, similarity, or test. Tests are not

used because tests are expected to be mission requirements rather than STRS requirements.

a. Analysis is the process of utilizing analytical techniques to verify that requirements

have been satisfied. This method may be used when qualification by test is not possible, when a

test would introduce significant risk into the software, or when analysis is an appropriate, cost-

effective qualification method.

b. Inspection is a qualification method consisting of investigation without the use of

special tests. Inspection is usually a visual examination, but it may be computer-aided. Using a

script or WFCCN refers to the STRS compliance tools as described in the NASA/TM—2011-

217266, STRS Compliance Testing document. A compliance certification testing facility is

available at Glenn Research Center (GRC) to perform compliance testing and will test all STRS

applications submitted to the STRS application repository. The users may use their own tools as

an independent check of an OE or of an application prior to submitting the application to the

STRS application repository.

(1) Using a script or WFCCN is a type of inspection that is computer-aided.

(2) Using a compliance tool implies a script or WFCCN.

(3) Using a program, such as XMLSpy, validates the XML schema and the

predeployed configuration file against its schema.

http://ntrs.nasa.gov/search.jsp?R=20080008862&hterms=Space+Telecommunications+Radio+System+STRS+Architecture+Goals%2fObjectives+Level+Requirements&qs=Ntx%3Dmode%2520matchallpartial%2520%26Ntk%3DAll%26N%3D0%26Ntt%3DSpace%2520Telecommunications%2520Radio%252
http://ntrs.nasa.gov/search.jsp?R=20080008862&hterms=Space+Telecommunications+Radio+System+STRS+Architecture+Goals%2fObjectives+Level+Requirements&qs=Ntx%3Dmode%2520matchallpartial%2520%26Ntk%3DAll%26N%3D0%26Ntt%3DSpace%2520Telecommunications%2520Radio%252
http://ntrs.nasa.gov/search.jsp?R=20080008862&hterms=Space+Telecommunications+Radio+System+STRS+Architecture+Goals%2fObjectives+Level+Requirements&qs=Ntx%3Dmode%2520matchallpartial%2520%26Ntk%3DAll%26N%3D0%26Ntt%3DSpace%2520Telecommunications%2520Radio%252
http://ntrs.nasa.gov/search.jsp?R=20080024190&hterms=Space+Telecommunications+Radio+System+Software+Architecture+Concepts+Analysis&qs=Ntx%3Dmode%2520matchallpartial%2520%26Ntk%3DAll%26N%3D0%26Ntt%3DSpace%2520Telecommunications%2520Radio%2520System%2520Soft
http://ntrs.nasa.gov/search.jsp?R=20080024190&hterms=Space+Telecommunications+Radio+System+Software+Architecture+Concepts+Analysis&qs=Ntx%3Dmode%2520matchallpartial%2520%26Ntk%3DAll%26N%3D0%26Ntt%3DSpace%2520Telecommunications%2520Radio%2520System%2520Soft
http://www.ntrs.nasa.gov/search.jsp?R=20120000912&hterms=Compliance+Tools&qs=N%253D0%2526Ntk%253DAll%2526Ntt%253DCompliance%20Tools%2526Ntx%253Dmode%20matchallpartial
http://www.ntrs.nasa.gov/search.jsp?R=20120000912&hterms=Compliance+Tools&qs=N%253D0%2526Ntk%253DAll%2526Ntt%253DCompliance%20Tools%2526Ntx%253Dmode%20matchallpartial

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

43 of 119

c. Observation is a method of qualification that is limited to readily observable

functional operation to determine compliance with requirements. This method of qualification

does not require the use of special equipment or sophisticated instrumentation.

d. Similarity is the process of using analysis and/or “delta testing” to prove the design

adequacy of an item by reference to the prior qualification of an identifiable item that has been

qualified for a similar application.

e. Test is a qualification method that employs technical means including, but not limited

to, the evaluation of functional characteristics by the use of special equipment or

instrumentation, simulation techniques, and the application of established principles and

procedures to determine compliance with requirements. The analysis of data derived from a test

is an integral part of the method.

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

44 of 119

7.1 STRS-1 Power Up

Requirement An STRS platform shall have a known state after completion of the

power-up process.

Rationale To increase the reliability of the STRS platform after reboot or power

cycle, the radio has to be able to return to full operation autonomously

without the need for external equipment or procedures.

Category Availability, Reliability

Traced-from 4.3, 5.17

Use Case Power On

Related to OE

Notes A known state is one that is predictable from documentation or from

configuration file(s) or some combination thereof.

Verification Method Observation of radio operation.

7.2 STRS-2 Provide Platform Diagnostics

Requirement The STRS OE shall access each module’s diagnostic information via

the STRS APIs.

Rationale To increase the reliability and availability of the STRS platform, there

has to be a means of providing data to identify configuration

information as well as status and fault identification. Data for both

BITs and recognition of operational degradation and malfunction has

to be available.

Category Reliability, Availability

Traced-from 4.3, 5.15, 5.16

Use Case Fault Management, Built-In Test

Related to OE

Notes None

Verification Method Observation of radio operation.

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

45 of 119

7.3 STRS-3 Use Platform Diagnostics

Requirement Self-diagnostic and fault-detection data shall be created for each

module so that it is accessible to the STRS OE.

Rationale To increase reliability and availability of the STRS platform, there has

to be a means of providing data to identify configuration information

as well as status and fault identification. Data for both Built-In-Tests

and recognition of operational degradation and malfunction have to be

available.

Category Reliability, Availability

Traced-from 5.15, 5.16

Use Case Fault Management, Built-In Test

Related to OE

Notes None

Verification Method Observation of radio operation.

7.4 STRS-4 Document Resources

Requirement The STRS platform provider shall describe, in the HID document, the

behavior and capability of each major functional device or resource

available for use by waveforms, services, or other applications (e.g.,

FPGA, GPP, DSP, or memory), noting any operational limitations.

Rationale Waveform developers need to know the features and limitations of the

platform for their applications. Once the radio has been procured,

NASA has the knowledge to procure or produce new or additional

modules using HID information. Also, future module replacement or

additions will be possible without designing a new platform.

Category Adaptability

Traced-from 4.7, 4.8, 5.2, 5.3

Use Case

None

Related to Platform

Notes None

Verification Method Inspection of HID document.

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

46 of 119

7.5 STRS-5 Document Capability

Requirement The STRS platform provider shall describe, in the HID document, the

reconfigurability behavior and capability of each reconfigurable

component.

Rationale Waveform developers need to know the features and limitations of the

platform for their applications. Once the radio has been procured,

NASA has the knowledge to procure or produce new or additional

modules using HID information. Also, future module replacement or

additions will be possible without designing a new platform.

Category Adaptability

Traced-from 4.7, 4.8, 5.2, 5.3

Use Case None

Related to Platform

Notes None

Verification Method Inspection of HID document.

7.6 STRS-6 Document Radio Frequency (RF) Behavior

Requirement The STRS platform provider shall describe, in the HID document, the

behavior and performance of the RF modular component(s).

Rationale Waveform developers need to know the features and limitations of the

platform for their applications. Once the radio has been procured,

NASA has the knowledge to procure or produce new or additional

modules using HID information. Also, future module replacement or

additions will be possible without designing a new platform.

Category Interoperability, Adaptability

Traced-from 4.6, 4.7, 4.8, 5.2, 5.3

Use Case

None

Related to Platform

Notes

None

Verification Method Inspection of HID document.

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

47 of 119

7.7 STRS-7 Document Module Interfaces

Requirement The STRS platform provider shall describe, in the HID document, the

interfaces that are provided to and from each modular component of

the radio platform.

Rationale Waveform developers need to know the features and limitations of the

platform for their applications. Once the radio has been procured,

NASA has the knowledge to procure or produce new or additional

modules using HID information. Also, future module replacement or

additions will be possible without designing a new platform.

Category Interoperability, Adaptability

Traced-from 4.2, 4.7, 4.8, 5.2, 5.3

Use Case None

Related to Platform

Notes None

Verification Method Inspection of HID document.

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

48 of 119

7.8 STRS-8 Document Module Control

Requirement The STRS platform provider shall describe, in the HID document, the

control, telemetry, and data mechanisms of each modular component

(i.e., how to program or control each modular component of the

platform, and how to use or access each device or software

component, noting any proprietary and nonstandard aspects).

Rationale Waveform developers need to know the features and limitations of the

platform for their applications. Once the radio has been procured,

NASA has the knowledge to procure or produce new or additional

modules using HID information. Also, future module replacement or

additions will be possible without designing a new platform.

Category Interoperability, Adaptability

Traced-from 4.7, 4.8, 5.2, 5.3

Use Case

None

Related to Platform

Notes None

Verification Method Inspection of HID document.

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

49 of 119

7.9 STRS-9 Document Power

Requirement The STRS platform provider shall describe, in the HID document, the

behavior and performance of any power supply or power converter

modular component(s).

Rationale Waveform developers need to know the features and limitations of the

platform for their applications. Once the radio has been procured,

NASA has the knowledge to procure or produce new or additional

modules using HID information. Also, future module replacement or

additions will be possible without designing a new platform.

Category Reliability, Adaptability

Traced-from 4.7, 4.8, 5.2, 5.3

Use Case None

Related to Platform

Notes None

Verification Method Inspection of HID document.

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

50 of 119

7.10 STRS-10 STRS Application Uses OE

Requirement An STRS application shall use the infrastructure STRS API and

POSIX API for access to platform resources.

Rationale For an open architecture to support portability, the architecture has to

be standardized across platforms and implementations. Where

possible, use currently available standards. Thus POSIX subsets were

chosen to implement certain OS services missing from the list of

STRS Application-provided methods The POSIX subsets are widely

available, implemented by multiple OSs, and scalable. Layering of the

architecture separates and encapsulates functionality so that the parts

are less influenced by changes to the other. This separation of

functionality promotes portability.

Category Portability

Traced-from 4.2, 4.7, 5.1

Use Case None

Related to Application

Notes Notes

Verification Method Inspection using compliance tool.

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

51 of 119

7.11 STRS-11 OE Uses HAL

Requirement The STRS infrastructure shall use the STRS platform HAL APIs to

communicate with application components on the platform specialized

hardware via the physical interface defined by the STRS platform

provider.

Rationale The HAL API is to be published so that specialized hardware made by

one company may be integrated with the STRS infrastructure made by

a different company.

The HAL API documentation is to include a description of each

method or function used, including its calling sequence, return values,

an explanation of its functionality, any preconditions before using the

method or function, and the status after using the method or function.

The HAL API documentation is to also contain information about the

underlying hardware such as address and data interfaces, interrupt

input and output, power connections, and other control and data lines

necessary to operate in the STRS platform environment.

Category Adaptability, Extensibility

Traced-from 4.4, 4.5, 5.1, 5.2

Use Case

None

Related to OE

Notes

See also STRS-92.

Verification Method Inspection of HAL document.

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

52 of 119

7.12 STRS-12 STRS Application Repository

Requirement The following application development artifacts shall be submitted to

the NASA STRS application repository.

(1) High-level system or component software model.

(2) Documentation of application configurable hardware

design external interfaces (e.g., signal names, descriptions,

polarity, format, data type, and timing constraints).

(3) Documentation of STRS application behavior.

(4) Application function sources (e.g., C, C++, header files,

VHSIC VHDL, and Verilog).

(5) Application libraries, if applicable (e.g., electronic design

interchange format (EDIF) and Dynamic Link Library

(DLL)).

(6) Documentation of application development environment

and tool suite.

A. Include application name, purpose, developer, version,

and configuration specifics.

B. Include the hardware on which the application is

executed, its OS, OS developer, OS version, and OS

configuration specifics.

C. Include the infrastructure description, developer,

version, and unique implementation items used for

application development.

(7) Test plans, procedures and results documentation.

(8) Identification of software development standards used

(9) Version of NASA-STD-4009.

(10) Information, along with supporting documentation,

required to make the appropriate decisions regarding

ownership, distribution rights, and release (technology

transfer) of the application and associated artifacts.

(11) Version Description Document or equivalent with

version numbers defined down to the lowest level

components.

(12) Documentation of the platform component hardware

used by the application, its function and the

interconnections. If the component executes an operating

system, document the OS, OS developer, OS version, and

OS configuration.

Category Portability

Traced-from 4.2, 4.9, 5.2

Use Case None

Related to Application

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

53 of 119

Notes See also STRS-92.

Verification Method Inspection of deliverable items and documentation.

7.13 STRS-13 OE Controls Signal-Processing Module (SPM)

Requirement If the STRS application has a component resident outside the GPM

(e.g., in configurable hardware design), then the component shall be

controllable from the STRS OE.

Rationale The layering of the architecture introduces the need for the GPP to be

able to control, configure, and monitor many aspects of the SPM. For

portability, waveform applications use STRS APIs, which access the

HAL or POSIX API within the STRS OE as needed.

Category Portability, Reconfigurability, Adaptability

Traced-from 4.5, 4.9, 5.1, 5.4, 5.22

Use Case None

Related to Application

Notes None

Verification Method Observation of operation of radio.

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

54 of 119

7.14 STRS-14 Provide Platform-Specific Wrapper

Requirement The STRS SPM developer shall provide a platform-specific wrapper

for each user-programmable FPGA, which performs the following

functions:

(1) Provides an interface for command and data from the GPM to

the waveform application

(2) Provides the platform-specific pinout for the STRS application

developer. This may be a complete abstraction of the actual

FPGA pinouts with only waveform application signal names

provided.

Rationale To aid in the portability of waveform applications within an FPGA, a

platform-specific wrapper provides an additional layer separating the

interface between the GPP and SPM/FPGA from the signal processing

functionality within the FPGA.

Category Portability, Extensibility

Traced-from 4.2, 4.4, 4.9, 5.1, 5.8

Use Case None

Related to Platform

Notes None

Verification Method Inspection of document and code.

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

55 of 119

7.15 STRS-15 Document Platform-Specific Wrapper

Requirement The STRS SPM developer shall provide documentation on the

configurable hardware design interfaces of the platform-specific

wrapper for each user-programmable FPGA, which describes the

following:

(1) Signal names and descriptions.

(2) Signal polarity, format, and data type.

(3) Signal direction.

(4) Signal-timing constraints.

(5) Clock generation and synchronization methods.

(6) Signal-registering methods.

(7) Identification of development tool set used.

(8) Any included noninterface functionality.

Rationale When functions, interfaces, components, and/or design rules are

defined and published, the architecture is open. Open architecture

facilitates interoperability among commercial and government

developers and minimizes the operational impact of upgrading

hardware and software components.

Category Portability, Adaptability

Traced-from 4.2, 4.4, 4.7, 4.8, 4.9, 5.1, 5.2

Use Case None

Related to Platform

Notes None

Verification Method Inspection of document.

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

56 of 119

7.16 STRS-16 Use C/C++ WF Interface

Requirement The STRS Application-provided Application Control API shall be

implemented using ISO/IEC C or C++.

Rationale Because portability is a basic goal but middleware is not required, a

totally language-independent solution was not available. The lowest

common denominator turns out to be a C or C++ language interface.

Using a standard ISO/IEC 9899 C or ISO/IEC 14882 C++ aids

portability. The year is not included in the requirement, so that

obsolete compilers are not mandated.

Category Portability, Scalability

Traced-from 4.1, 4.2, 4.7, 4.9, 5.1

Use Case None

Related to Application

Notes None

Verification Method Inspection of code.

7.17 STRS-17 OE Uses STRS Application Control API

Requirement The STRS infrastructure shall use the STRS Application-provided

Application Control API to control STRS applications.

Rationale Layering of the architecture separates and encapsulates functionality

so that the parts are less influenced by changes to the other. This

separation of functionality promotes portability.

Category Portability

Traced-from 4.1, 4.2, 4.7, 4.9, 5.1

Use Case None

Related to OE

Notes The STRS Application-provided Application Control API refers to the

API defined in STRS-29 through STRS-39 and the corresponding

tables 5 through 15. The method names in the STRS Application-

provided Application Control API begin with “APP_”.

Verification Method Inspection using OE script and WFCCN.

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

57 of 119

7.18 STRS-18 Use C/C++ Compile-Time

Requirement The STRS OE shall support ISO/IEC C or C++, or both, language

interfaces for the STRS Application-provided Application Control API

at compile-time.

Rationale Because portability is a basic goal but middleware is not required, a

totally language-independent solution was not available. The lowest

common denominator turns out to be a C or C++, or both, language

interface. Using a standard ISO/IEC 9899 C or ISO/IEC 14882 C++

aids portability. The year is not included in the requirement, so that

obsolete compilers are not mandated.

Category Portability

Traced-from 4.1, 4.2, 4.7, 4.9, 5.1

Use Case None

Related to OE

Notes None

Verification Method Inspection

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

58 of 119

7.19 STRS-19 Use C/C++ Run-Time

Requirement The STRS OE shall support ISO/IEC C or C++, or both, language

interfaces for the STRS Application-provided Application Control API

at run-time.

Rationale Because portability is a basic goal but middleware is not required, a

totally language-independent solution was not available. The lowest

common denominator turns out to be a C or C++, or both, language

interface. Using a standard ISO/IEC 9899 C or ISO/IEC 14882 C++

aids portability. The year is not included in the requirement, so that

obsolete compilers are not mandated.

Category Portability

Traced-from 4.1, 4.2, 4.7, 4.9, 5.1

Use Case None

Related to OE

Notes None

Verification Method Use WFCCN.

7.20 STRS-20 Include STRS_ApplicationControl.h

Requirement Each STRS application shall contain:

 #include "STRS_ApplicationControl.h".

Rationale For portability, standard names are defined for various constants, data

types, and method prototypes in the API.

Category Portability

Traced-from 4.9, 5.1, 5.2

Use Case None

Related to Application

Notes None

Verification Method Inspection using compliance tool.

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

59 of 119

7.21 STRS-21 Provide STRS_ApplicationControl.h

Requirement The STRS platform provider shall provide an

“STRS_ApplicationControl.h” that contains the method prototypes for

each STRS application and, for C++, the class definition for the base

class STRS_ApplicationControl.

Rationale For portability, standard names are defined for various constants, data

types, and method prototypes in the API.

Category Portability

Traced-from 4.9, 5.1, 5.2

Use Case None

Related to OE

Notes None

Verification Method Inspection

7.22 STRS-22 STRS_ApplicationControl Base Class

Requirement If the STRS Application-provided Application Control API is

implemented in C++, the STRS application class shall be derived from

the STRS_ApplicationControl base class.

Rationale For portability, standard names are defined for various constants, data

types, and method prototypes in the API.

Category Portability

Traced-from 4.9, 5.1, 5.2

Use Case None

Related to Application

Notes None

Verification Method Inspection

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

60 of 119

7.23 STRS-23 Include STRS_Sink.h

Requirement If the STRS application provides the APP_Write method, the STRS

application shall contain:

 #include "STRS_Sink.h".

Rationale For portability, standard names are defined for various constants, data

types, and method prototypes in the API.

Category Portability

Traced-from 4.9, 5.1, 5.2

Use Case None

Related to Application

Notes None

Verification Method Inspection using compliance tool.

7.24 STRS-24 Provide STRS_Sink.h

Requirement The STRS platform provider shall provide an “STRS_Sink.h” that

contains the method prototypes for APP_Write and, for C++, the class

definition for the base class STRS_Sink.

Rationale For portability, standard names are defined for various constants, data

types, and method prototypes in the API.

Category Portability

Traced-from 4.9, 5.1, 5.2

Use Case

None

Related to OE

Notes None

Verification Method Inspection

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

61 of 119

7.25 STRS-25 STRS_Sink Base Class

Requirement If the STRS Application-provided Application Control API is

implemented in C++ and the STRS application provides the

APP_Write method, the STRS application class shall be derived from

the STRS_Sink base class.

Rationale For portability, standard names are defined for various constants, data

types, and method prototypes in the API.

Category Portability

Traced-from 4.9, 5.1, 5.2

Use Case None

Related to Application

Notes None

Verification Method Inspection

7.26 STRS-26 Include STRS_Source.h

Requirement If the STRS application provides the APP_Read method, the STRS

application shall contain:

 #include "STRS_Source.h".

Rationale For portability, standard names are defined for various constants, data

types, and method prototypes in the API.

Category Portability

Traced-from 4.9, 5.1, 5.2

Use Case None

Related to Application

Notes None

Verification Method Inspection using compliance tool.

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

62 of 119

7.27 STRS-27 Provide STRS_Source.h

Requirement The STRS platform provider shall provide an “STRS_Source.h” that

contains the method prototypes for APP_Read and, for C++, the class

definition for the base class STRS_Source.

Rationale For portability, standard names are defined for various constants, data

types, and method prototypes in the API.

Category Portability

Traced-from 4.9, 5.1, 5.2

Use Case None

Related to OE

Notes None

Verification Method Inspection

7.28 STRS-28 STRS_Source Base Class

Requirement If the STRS Application-provided Application Control API is

implemented in C++ and the STRS application provides the

APP_Read method, the STRS application class shall be derived from

the STRS_Source base class.

Rationale For portability, standard names are defined for various constants, data

types, and method prototypes in the API.

Category Portability

Traced-from 4.9, 5.1, 5.2

Use Case None

Related to Application

Notes None

Verification Method Inspection

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

63 of 119

7.29 STRS-29 APP_Configure

Requirement Each STRS application shall contain a callable APP_Configure

method as described in table 5, APP_Configure().

Rationale For an open architecture to support portability, the architecture has to

be standardized across platforms and implementations. In particular,

waveform applications and services have to implement and use

standard interfaces across all platforms. In addition, APP_Configure

was patterned after the configure method in the PropertySet interface

in JTRS/SCA and OMG/SWRADIO.

Category Portability, Extensibility

Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.7, 4.8, 4.9, 5.1, 5.2, 5.3

Use Case Set Waveform Parameter

Related to Application

Notes The table in the requirement is in NASA-STD-4009.

Verification Method Inspection using compliance tool.

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

64 of 119

7.30 STRS-30 APP_GroundTest

Requirement Each STRS application shall contain a callable APP_GroundTest

method as described in table 6, APP_GroundTest().

Rationale For an open architecture to support portability, the architecture has to

be standardized across platforms and implementations. In particular,

waveform applications and services have to implement and use

standard interfaces across all platforms. In addition, APP_GroundTest

was patterned after the runTest method in the TestableObject interface

in JTRS/SCA and OMG/SWRADIO. It performs system and unit

testing usually done before deployment.

Category Portability, Extensibility

Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.7, 4.8, 4.9, 5.1, 5.2, 5.3, 5.15

Use Case Built-In Test

Related to Application

Notes The table in the requirement is in NASA-STD-4009.

Verification Method Inspection using compliance tool.

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

65 of 119

7.31 STRS-31 APP_Initialize

Requirement Each STRS application shall contain a callable APP_Initialize method

as described in table 7, APP_Initialize().

Rationale For an open architecture to support portability, the architecture has to

be standardized across platforms and implementations. In particular,

waveform applications and services have to implement and use

standard interfaces across all platforms. In addition, APP_Initialize

was patterned after the initialize method in the LifeCycle interface in

JTRS/SCA and OMG/SWRADIO.

Category Portability, Extensibility

Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.7, 4.8, 4.9, 5.1, 5.2, 5.3

Use Case Waveform Instantiation

Related to Application

Notes The table in the requirement is in NASA-STD-4009.

Verification Method Inspection using compliance tool.

7.32 STRS-32 APP_Instance

Requirement Each STRS application shall contain a callable APP_Instance method

as described in table 8, APP_Instance().

Rationale For an open architecture to support portability, the architecture has to

be standardized across platforms and implementations. In particular,

waveform applications and services have to implement and use

standard interfaces across all platforms.

Category Portability, Extensibility

Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.7, 4.8, 4.9, 5.1, 5.2, 5.3

Use Case Waveform Instantiation

Related to Application

Notes The table in the requirement is in NASA-STD-4009.

Verification Method Inspection using compliance tool

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

66 of 119

7.33 STRS-33 APP_Query

Requirement Each STRS application shall contain a callable APP_Query method as

described in table 9, APP_Query().

Rationale For an open architecture to support portability, the architecture has to

be standardized across platforms and implementations. In particular,

waveform applications and services have to implement and use

standard interfaces across all platforms. In addition, APP_Query was

patterned after the query method in the PropertySet interface in

JTRS/SCA and OMG/SWRADIO.

Category Portability, Extensibility

Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.7, 4.8, 4.9, 5.1, 5.2, 5.3

Use Case Get Waveform Parameter

Related to Application

Notes The table in the requirement is in NASA-STD-4009.

Verification Method Inspection using compliance tool.

7.34 STRS-34 APP_Read

Requirement If the STRS application provides data to the infrastructure, then the

STRS application shall contain a callable APP_Read method as

described in table 10, APP_Read().

Rationale For an open architecture to support portability, the architecture has to

be standardized across platforms and implementations. In particular,

waveform applications and services have to implement and use

standard interfaces across all platforms.

Category Portability, Extensibility

Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.7, 4.8, 4.9, 5.1, 5.2, 5.3

Use Case Transmit a Packet

Related to Application

Notes The table in the requirement is in NASA-STD-4009.

Verification Method Inspection using compliance tool.

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

67 of 119

7.35 STRS-35 APP_ReleaseObject

Requirement Each STRS application shall contain a callable APP_ReleaseObject

method as described in table 11, APP_ReleaseObject().

Rationale For an open architecture to support portability, the architecture has to

be standardized across platforms and implementations. In particular,

waveform applications and services have to implement and use

standard interfaces across all platforms. In addition,

APP_ReleaseObject was patterned after the releaseObject method in

the LifeCycle interface in JTRS/SCA and OMG/SWRADIO.

Category Portability, Extensibility

Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.7, 4.8, 4.9, 5.1, 5.2, 5.3

Use Case Waveform Deallocation

Related to Application

Notes The table in the requirement is in NASA-STD-4009.

Verification Method Inspection using compliance tool.

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

68 of 119

7.36 STRS-36 APP_RunTest

Requirement Each STRS application shall contain a callable APP_RunTest method

as described in table 12, APP_RunTest().

Rationale For an open architecture to support portability, the architecture has to

be standardized across platforms and implementations. In particular,

waveform applications and services have to implement and use

standard interfaces across all platforms. In addition, APP_RunTest

was patterned after the runTest method in the TestableObject interface

in JTRS/SCA and OMG/SWRADIO. It performs system and unit

testing usually done after deployment.

Category Portability, Extensibility

Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.7, 4.8, 4.9, 5.1, 5.2, 5.3, 5.15

Use Case Built-In Test

Related to Application

Notes The table in the requirement is in NASA-STD-4009.

Verification Method Inspection using compliance tool.

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

69 of 119

7.37 STRS-37 APP_Start

Requirement Each STRS application shall contain a callable APP_Start method as

described in table 13, APP_Start().

Rationale For an open architecture to support portability, the architecture has to

be standardized across platforms and implementations. In particular,

waveform applications and services have to implement and use

standard interfaces across all platforms. In addition, APP_Start was

patterned after the start method in the Resource interface in JTRS/SCA

and ControllableComponent interface in OMG/SWRADIO.

Category Portability, Extensibility

Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.7, 4.8, 4.9, 5.1, 5.2, 5.3

Use Case Waveform Start

Related to Application

Notes The table in the requirement is in NASA-STD-4009.

Verification Method Inspection using compliance tool.

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

70 of 119

7.38 STRS-38 APP_Stop

Requirement Each STRS application shall contain a callable APP_Stop method as

described in table 14, APP_Stop().

Rationale For an open architecture to support portability, the architecture has to

be standardized across platforms and implementations. In particular,

waveform applications and services have to implement and use

standard interfaces across all platforms. In addition, APP_Stop was

patterned after the stop method in the Resource interface in JTRS/SCA

and ControllableComponent interface in OMG/SWRADIO.

Category Portability, Extensibility

Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.7, 4.8, 4.9, 5.1, 5.2, 5.3

Use Case Waveform Stop

Related to Application

Notes The table in the requirement is in NASA-STD-4009.

Verification Method Inspection using compliance tool.

7.39 STRS-39 APP_Write

Requirement If the STRS application receives data from the infrastructure, then the

STRS application shall contain a callable APP_Write method as

described in table 15, APP_Write().

Rationale For an open architecture to support portability, the architecture has to

be standardized across platforms and implementations. In particular,

waveform applications and services have to implement and use

standard interfaces across all platforms.

Category Portability, Extensibility

Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.7, 4.8, 4.9, 5.1, 5.2, 5.3

Use Case Receive a Packet

Related to Application

Notes The table in the requirement is in NASA-STD-4009.

Verification Method Inspection using compliance tool.

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

71 of 119

7.40 STRS-40 STRS_Configure

Requirement The STRS infrastructure shall contain a callable STRS_Configure

method as described in table 16, STRS_Configure().

Rationale For an open architecture to support portability, the architecture has to

be standardized across platforms and implementations. In particular,

waveform applications and services have to implement and use

standard interfaces across all platforms. The signature of the

infrastructure method is different from the signature of the

corresponding application method because there has to be a C

language interface to the infrastructure method and it has to contain

additional information that allows the infrastructure to determine

whether the target component is C or C++ and call the corresponding

application method appropriately.

Category Portability, Extensibility

Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.7, 4.8, 4.9, 5.1, 5.2

Use Case Set Waveform Parameter

Related to OE

Notes The table in the requirement is in NASA-STD-4009.

Verification Method Use WFCCN.

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

72 of 119

7.41 STRS-41 STRS_GroundTest

Requirement The STRS infrastructure shall contain a callable STRS_GroundTest

method as described in table 17, STRS_GroundTest().

Rationale For an open architecture to support portability, the architecture has to

be standardized across platforms and implementations. In particular,

waveform applications and services have to implement and use

standard interfaces across all platforms. The signature of the

infrastructure method is different from the signature of the

corresponding application method because there has to be a C

language interface to the infrastructure method and it has to contain

additional information that allows the infrastructure to determine

whether the target component is C or C++ and call the corresponding

application method appropriately. It performs system and unit testing

usually done before deployment.

Category Portability, Extensibility

Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.7, 4.8, 4.9, 5.1, 5.2, 5.15

Use Case Built-In Test

Related to OE

Notes The table in the requirement is in NASA-STD-4009.

Verification Method Use WFCCN.

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

73 of 119

7.42 STRS-42 STRS_Initialize

Requirement The STRS infrastructure shall contain a callable STRS_Initialize

method as described in table 18, STRS_Initialize().

Rationale For an open architecture to support portability, the architecture has to

be standardized across platforms and implementations. In particular,

waveform applications and services have to implement and use

standard interfaces across all platforms. The signature of the

infrastructure method is different from the signature of the

corresponding application method because there has to be a C

language interface to the infrastructure method and it has to contain

additional information that allows the infrastructure to determine

whether the target component is C or C++ and call the corresponding

application method appropriately.

Category Portability, Extensibility

Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.7, 4.8, 4.9, 5.1, 5.2

Use Case Waveform Instantiation

Related to OE

Notes The table in the requirement is in NASA-STD-4009.

Verification Method Use WFCCN.

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

74 of 119

7.43 STRS-43 STRS_Query

Requirement The STRS infrastructure shall contain a callable STRS_Query method

as described in table 19, STRS_Query().

Rationale For an open architecture to support portability, the architecture has to

be standardized across platforms and implementations. In particular,

waveform applications and services have to implement and use

standard interfaces across all platforms. The signature of the

infrastructure method is different from the signature of the

corresponding application method because there has to be a C

language interface to the infrastructure method and it has to contain

additional information that allows the infrastructure to determine

whether the target component is C or C++ and call the corresponding

application method appropriately.

Category Portability, Extensibility

Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.7, 4.8, 4.9, 5.1, 5.2

Use Case Get Waveform Parameter

Related to OE

Notes The table in the requirement is in NASA-STD-4009.

Verification Method Use WFCCN.

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

75 of 119

7.44 STRS-44 STRS_ReleaseObject

Requirement The STRS infrastructure shall contain a callable STRS_ReleaseObject

method as described in table 20, STRS_ReleaseObject().

Rationale For an open architecture to support portability, the architecture has to

be standardized across platforms and implementations. In particular,

waveform applications and services have to implement and use

standard interfaces across all platforms. The signature of the

infrastructure method is different from the signature of the

corresponding application method because there has to be a C

language interface to the infrastructure method and it has to contain

additional information that allows the infrastructure to determine

whether the target component is C or C++ and call the corresponding

application method appropriately.

Category Portability, Extensibility

Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.7, 4.8, 4.9, 5.1, 5.2

Use Case Get Waveform Parameter

Related to OE

Notes The table in the requirement is in NASA-STD-4009.

Verification Method Use WFCCN.

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

76 of 119

7.45 STRS-45 STRS_RunTest

Requirement The STRS infrastructure shall contain a callable STRS_RunTest

method as described in table 21, STRS_RunTest().

Rationale For an open architecture to support portability, the architecture has to

be standardized across platforms and implementations. In particular,

waveform applications and services have to implement and use

standard interfaces across all platforms. The signature of the

infrastructure method is different from the signature of the

corresponding application method because there has to be a C

language interface to the infrastructure method and it has to contain

additional information that allows the infrastructure to determine

whether the target component is C or C++ and call the corresponding

application method appropriately. It performs system and unit testing

usually done after deployment.

Category Portability, Extensibility

Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.7, 4.8, 4.9, 5.1, 5.2, 5.15

Use Case Built-In Test

Related to OE

Notes The table in the requirement is in NASA-STD-4009.

Verification Method Use WFCCN.

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

77 of 119

7.46 STRS-46 STRS_Start

Requirement The STRS infrastructure shall contain a callable STRS_Start method

as described in table 22, STRS_Start().

Rationale For an open architecture to support portability, the architecture has to

be standardized across platforms and implementations. In particular,

waveform applications and services have to implement and use

standard interfaces across all platforms. The signature of the

infrastructure method is different from the signature of the

corresponding application method because there has to be a C

language interface to the infrastructure method and it has to contain

additional information that allows the infrastructure to determine

whether the target component is C or C++ and call the corresponding

application method appropriately.

Category Portability, Extensibility

Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.7, 4.8, 4.9, 5.1, 5.2

Use Case Waveform Start

Related to OE

Notes The table in the requirement is in NASA-STD-4009.

Verification Method Use WFCCN.

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

78 of 119

7.47 STRS-47 STRS_Stop

Requirement The STRS infrastructure shall contain a callable STRS_Stop method

as described in table 23, STRS_Stop().

Rationale For an open architecture to support portability, the architecture has to

be standardized across platforms and implementations. In particular,

waveform applications and services have to implement and use

standard interfaces across all platforms. The signature of the

infrastructure method is different from the signature of the

corresponding application method because there has to be a C

language interface to the infrastructure method and it has to contain

additional information that allows the infrastructure to determine

whether the target component is C or C++ and call the corresponding

application method appropriately.

Category Portability, Extensibility

Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.7, 4.8, 4.9, 5.1, 5.2

Use Case Waveform Start

Related to OE

Notes The table in the requirement is in NASA-STD-4009.

Verification Method Use WFCCN.

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

79 of 119

7.48 STRS-48 STRS_AbortApp

Requirement The STRS infrastructure shall contain a callable STRS_AbortApp

method as described in table 24, STRS_AbortApp().

Rationale For an open architecture to support portability, the architecture has to

be standardized across platforms and implementations. In particular,

waveform applications and services have to implement and use

standard interfaces across all platforms.

Category Portability

Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.7, 4.8, 4.9, 5.1, 5.2

Use Case Waveform Abort

Related to OE

Notes The table in the requirement is in NASA-STD-4009.

Verification Method Use WFCCN.

7.49 STRS-49 STRS_GetErrorQueue

Requirement The STRS infrastructure shall contain a callable

STRS_GetErrorQueue method as described in table 25,

STRS_GetErrorQueue().

Rationale For an open architecture to support portability, the architecture has to

be standardized across platforms and implementations. In particular,

waveform applications and services have to use standard interfaces

across all platforms.

Category Portability

Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9, 5.1, 5.2

Use Case

None

Related to OE

Notes The table in the requirement is in NASA-STD-4009.

Verification Method Use WFCCN.

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

80 of 119

7.50 STRS-50 STRS_HandleRequest

Requirement The STRS infrastructure shall contain a callable STRS_HandleRequest

method as described in table 26, STRS_HandleRequest().

Rationale For an open architecture to support portability, the architecture has to

be standardized across platforms and implementations. In particular,

waveform applications and services have to use standard interfaces

across all platforms.

Category Portability

Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9, 5.1, 5.2

Use Case None

Related to OE

Notes The table in the requirement is in NASA-STD-4009.

Verification Method Use WFCCN.

7.51 STRS-51 STRS_InstantiateApp

Requirement The STRS infrastructure shall contain a callable STRS_InstantiateApp

method as described in table 27, STRS_InstantiateApp().

Rationale For an open architecture to support portability, the architecture has to

be standardized across platforms and implementations. In particular,

waveform applications and services have to use standard interfaces

across all platforms.

Category Portability

Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9, 5.1, 5.2

Use Case Waveform Instantiation

Related to OE

Notes The table in the requirement is in NASA-STD-4009.

Verification Method Use WFCCN.

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

81 of 119

7.52 STRS-52 STRS_IsOK

Requirement The STRS infrastructure shall contain a callable STRS_IsOK method

as described in table 28, STRS_IsOK().

Rationale For an open architecture to support portability, the architecture has to

be standardized across platforms and implementations. In particular,

waveform applications and services have to use standard interfaces

across all platforms.

Category Portability

Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9, 5.1, 5.2

Use Case None

Related to OE

Notes The table in the requirement is in NASA-STD-4009.

Verification Method Use WFCCN.

7.53 STRS-53 STRS_Log

Requirement The STRS infrastructure shall contain a callable STRS_Log method as

described in table 29, STRS_Log().

Rationale For an open architecture to support portability, the architecture has to

be standardized across platforms and implementations. In particular,

waveform applications and services have to use standard interfaces

across all platforms.

Category Portability

Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9, 5.1, 5.2

Use Case Fault Management

Related to OE

Notes The table in the requirement is in NASA-STD-4009.

Verification Method Use WFCCN.

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

82 of 119

7.54 STRS-54 STRS_Log Error

Requirement When an STRS application has a nonfatal error, the STRS application

shall use the callable STRS_Log method as described in table 29,

STRS_Log(), with a target handle ID of constant

STRS_ERROR_QUEUE.

Rationale For an open architecture to support portability, the architecture has to

be standardized across platforms and implementations. In particular,

waveform applications and services have to use standard interfaces

across all platforms.

Category Portability

Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9, 5.1, 5.2

Use Case Fault Management

Related to Application

Notes The table in the requirement is in NASA-STD-4009.

Verification Method Use WFCCN.

7.55 STRS-55 STRS_Log Fatal

Requirement When an STRS application has a fatal error, the STRS application

shall use the callable STRS_Log method as described in table 29,

STRS_Log(), with a target handle ID of constant

STRS_FATAL_QUEUE.

Rationale For an open architecture to support portability, the architecture has to

be standardized across platforms and implementations. In particular,

waveform applications and services have to use standard interfaces

across all platforms.

Category Portability

Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9, 5.1, 5.2

Use Case Fault Management

Related to Application

Notes The table in the requirement is in NASA-STD-4009.

Verification Method Use WFCCN.

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

83 of 119

7.56 STRS-56 STRS_Log Warning

Requirement When an STRS application has a warning condition, the STRS

application shall use the callable STRS_Log method as described in

table 29, STRS_Log(), with a target handle ID of constant

STRS_WARNING_QUEUE.

Rationale For an open architecture to support portability, the architecture has to

be standardized across platforms and implementations. In particular,

waveform applications and services have to use standard interfaces

across all platforms.

Category Portability

Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9, 5.1, 5.2

Use Case Fault Management

Related to Application

Notes The table in the requirement is in NASA-STD-4009.

Verification Method Use WFCCN.

7.57 STRS-57 STRS_Log Telemetry

Requirement When an STRS application needs to send telemetry, the STRS

application shall use the callable STRS_Log method as described in

table 29, STRS_Log(), with a target handle ID of constant

STRS_TELEMETRY_QUEUE.

Rationale For an open architecture to support portability, the architecture has to

be standardized across platforms and implementations. In particular,

waveform applications and services have to use standard interfaces

across all platforms.

Category Portability

Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9, 5.1, 5.2

Use Case None

Related to Application

Notes The table in the requirement is in NASA-STD-4009.

Verification Method Use WFCCN.

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

84 of 119

7.58 STRS-58 STRS_Write

Requirement The STRS infrastructure shall contain a callable STRS_Write method

as described in table 30, STRS_Write().

Rationale For an open architecture to support portability, the architecture has to

be standardized across platforms and implementations. In particular,

waveform applications and services have to use standard interfaces

across all platforms.

Category Portability, Extensibility

Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9, 5.1, 5.2

Use Case Receive a Packet

Related to OE

Notes The table in the requirement is in NASA-STD-4009.

Verification Method Use WFCCN.

7.59 STRS-59 STRS_Read

Requirement The STRS infrastructure shall contain a callable STRS_Read method

as described in table 31, STRS_Read().

Rationale For an open architecture to support portability, the architecture has to

be standardized across platforms and implementations. In particular,

waveform applications and services have to use standard interfaces

across all platforms.

Category Portability, Extensibility

Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9, 5.1, 5.2

Use Case Transmit a Packet

Related to OE

Notes The table in the requirement is in NASA-STD-4009.

Verification Method Use WFCCN.

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

85 of 119

7.60 STRS-60 Device Control

Requirement The STRS applications shall use the methods in the STRS

infrastructure Device Control API, STRS infrastructure-provided

Application Control API, Infrastructure Data Source API (if

appropriate), and Infrastructure Data Sink API (if appropriate) to

control the STRS Devices.

Rationale For an open architecture to support portability, the architecture has to

be standardized across platforms and implementations. In particular,

waveform applications and services have to use standard interfaces

across all platforms.

Category Portability

Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9, 5.1, 5.2

Use Case None

Related to Application

Notes The STRS infrastructure Device Control API refers to the API defined

in STRS-61 through STRS-69 and corresponding tables 32 through 40.

The STRS infrastructure-provided Application Control API refers to

the API defined in STRS-40 through STRS-47 and corresponding

tables 16 through 23. The STRS infrastructure Data Source API refers

to the API defined in STRS-59 and corresponding table 31. The STRS

infrastructure Data Sink API refers to the API defined in STRS-58 and

corresponding table 30. The method names in the STRS infrastructure-

provided APIs begin with “STRS_”.

Verification Method Inspection

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

86 of 119

7.61 STRS-61 STRS_DeviceClose

Requirement The STRS infrastructure shall contain a callable STRS_DeviceClose

method as described in table 32, STRS_DeviceClose().

Rationale For an open architecture to support portability, the architecture has to

be standardized across platforms and implementations. In particular,

waveform applications and services have to use standard interfaces

across all platforms.

Category Portability

Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9, 5.1, 5.2

Use Case None

Related to OE

Notes The table in the requirement is in NASA-STD-4009.

Verification Method Use WFCCN.

7.62 STRS-62 STRS_DeviceFlush

Requirement The STRS infrastructure shall contain a callable STRS_DeviceFlush

method as described in table 33, STRS_DeviceFlush().

Rationale For an open architecture to support portability, the architecture has to

be standardized across platforms and implementations. In particular,

waveform applications and services have to use standard interfaces

across all platforms.

Category Portability

Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9, 5.1, 5.2

Use Case

None

Related to OE

Notes The table in the requirement is in NASA-STD-4009.

Verification Method Use WFCCN.

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

87 of 119

7.63 STRS-63 STRS_DeviceLoad

Requirement The STRS infrastructure shall contain a callable STRS_DeviceLoad

method as described in table 34, STRS_DeviceLoad().

Rationale For an open architecture to support portability, the architecture has to

be standardized across platforms and implementations. In particular,

waveform applications and services have to use standard interfaces

across all platforms.

Category Portability

Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9, 5.1, 5.2

Use Case None

Related to OE

Notes The table in the requirement is in NASA-STD-4009.

Verification Method Use WFCCN.

7.64 STRS-64 STRS_DeviceOpen

Requirement The STRS infrastructure shall contain a callable STRS_DeviceOpen

method as described in table 35, STRS_DeviceOpen().

Rationale For an open architecture to support portability, the architecture has to

be standardized across platforms and implementations. In particular,

waveform applications and services have to use standard interfaces

across all platforms.

Category Portability

Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9, 5.1, 5.2

Use Case None

Related to OE

Notes The table in the requirement is in NASA-STD-4009.

Verification Method Use WFCCN.

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

88 of 119

7.65 STRS-65 STRS_DeviceReset

Requirement The STRS infrastructure shall contain a callable STRS_DeviceReset

method as described in table 36, STRS_DeviceReset().

Rationale For an open architecture to support portability, the architecture has to

be standardized across platforms and implementations. In particular,

waveform applications and services have to use standard interfaces

across all platforms.

Category Portability

Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9, 5.1, 5.2

Use Case None

Related to OE

Notes The table in the requirement is in NASA-STD-4009.

Verification Method Use WFCCN.

7.66 STRS-66 STRS_DeviceStart

Requirement The STRS infrastructure shall contain a callable STRS_DeviceStart

method as described in table 37, STRS_DeviceStart().

Rationale For an open architecture to support portability, the architecture has to

be standardized across platforms and implementations. In particular,

waveform applications and services have to use standard interfaces

across all platforms.

Category Portability

Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9, 5.1, 5.2

Use Case None

Related to OE

Notes The table in the requirement is in NASA-STD-4009.

Verification Method Use WFCCN.

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

89 of 119

7.67 STRS-67 STRS_DeviceStop

Requirement The STRS infrastructure shall contain a callable STRS_DeviceStop

method as described in table 38, STRS_DeviceStop().

Rationale For an open architecture to support portability, the architecture has to

be standardized across platforms and implementations. In particular,

waveform applications and services have to use standard interfaces

across all platforms.

Category Portability

Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9, 5.1, 5.2

Use Case Waveform Stop

Related to OE

Notes The table in the requirement is in NASA-STD-4009.

Verification Method Use WFCCN.

7.68 STRS-68 STRS_DeviceUnload

Requirement The STRS infrastructure shall contain a callable STRS_DeviceUnload

method as described in table 39, STRS_DeviceUnload().

Rationale For an open architecture to support portability, the architecture has to

be standardized across platforms and implementations. In particular,

waveform applications and services have t use standard interfaces

across all platforms.

Category Portability

Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9, 5.1, 5.2

Use Case Waveform Deallocation

Related to OE

Notes The table in the requirement is in NASA-STD-4009.

Verification Method Use WFCCN.

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

90 of 119

7.69 STRS-69 STRS_SetISR

Requirement The STRS infrastructure shall contain a callable STRS_SetISR method

as described in table 40, STRS_SetISR().

Rationale For an open architecture to support portability, the architecture has to

be standardized across platforms and implementations. In particular,

waveform applications and services have to use standard interfaces

across all platforms.

Category Portability

Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9, 5.1, 5.2

Use Case None

Related to OE

Notes The table in the requirement is in NASA-STD-4009.

Verification Method Use WFCCN.

7.70 STRS-70 STRS_FileClose

Requirement The STRS infrastructure shall contain a callable STRS_FileClose

method as described in table 41, STRS_FileClose().

Rationale For an open architecture to support portability, the architecture has to

be standardized across platforms and implementations. In particular,

waveform applications and services have to use standard interfaces

across all platforms.

Category Portability

Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9, 5.1, 5.2

Use Case

None

Related to OE

Notes The table in the requirement is in NASA-STD-4009.

Verification Method Use WFCCN.

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

91 of 119

7.71 STRS-71 STRS_FileGetFreeSpace

Requirement The STRS infrastructure shall contain a callable

STRS_FileGetFreeSpace method as described in table 42,

STRS_FileGetFreeSpace().

Rationale For an open architecture to support portability, the architecture has to

be standardized across platforms and implementations. In particular,

waveform applications and services have to use standard interfaces

across all platforms.

Category Portability

Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9, 5.1, 5.2

Use Case

None

Related to OE

Notes The table in the requirement is in NASA-STD-4009.

Verification Method Use WFCCN.

7.72 STRS-72 STRS_FileGetSize

Requirement The STRS infrastructure shall contain a callable STRS_FileGetSize

method as described in table 43, STRS_FileGetSize().

Rationale For an open architecture to support portability, the architecture has to

be standardized across platforms and implementations. In particular,

waveform applications and services have to use standard interfaces

across all platforms.

Category Portability

Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9, 5.1, 5.2

Use Case None

Related to OE

Notes The table in the requirement is in NASA-STD-4009.

Verification Method Use WFCCN.

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

92 of 119

7.73 STRS-73 STRS_FileGetStreamPointer

Requirement The STRS infrastructure shall contain a callable

STRS_FileGetStreamPointer method as described in table 44,

STRS_FileGetStreamPointer().

Rationale STRS-73 solves the potential problem of I/O methods missing from

NASA-STD-4009. Since not all SDRs will have a file system, this

method should be used sparingly with comments describing its

purpose.

Category Extensibility

Traced-from 4.4, 4.5

Use Case None

Related to OE

Notes The table in the requirement is in NASA-STD-4009.

Verification Method Use WFCCN.

7.74 STRS-74 STRS_FileOpen

Requirement The STRS infrastructure shall contain a callable STRS_FileOpen

method as described in table 45, STRS_FileOpen().

Rationale For an open architecture to support portability, the architecture has to

be standardized across platforms and implementations. In particular,

waveform applications and services have to use standard interfaces

across all platforms.

Category Portability

Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9, 5.1, 5.2

Use Case

None

Related to OE

Notes The table in the requirement is in NASA-STD-4009.

Verification Method Use WFCCN.

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

93 of 119

7.75 STRS-75 STRS_FileRemove

Requirement The STRS infrastructure shall contain a callable STRS_FileRemove

method as described in table 46, STRS_FileRemove().

Rationale For an open architecture to support portability, the architecture has to

be standardized across platforms and implementations. In particular,

waveform applications and services have to use standard interfaces

across all platforms.

Category Portability

Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9, 5.1, 5.2

Use Case Waveform Remove

Related to OE

Notes The table in the requirement is in NASA-STD-4009.

Verification Method Use WFCCN.

7.76 STRS-76 STRS_FileRename

Requirement The STRS infrastructure shall contain a callable STRS_FileRename

method as described in table 47, STRS_FileRename().

Rationale For an open architecture to support portability, the architecture has to

be standardized across platforms and implementations. In particular,

waveform applications and services have to use standard interfaces

across all platforms.

Category Portability

Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9, 5.1, 5.2

Use Case

None

Related to OE

Notes The table in the requirement is in NASA-STD-4009.

Verification Method Use WFCCN.

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

94 of 119

7.77 STRS-77 Use Messaging API

Requirement The STRS applications shall use the STRS Infrastructure Messaging,

STRS Infrastructure Data Source, and STRS Infrastructure Data Sink

methods to establish queues to send messages between components.

Rationale In an SDR executing multiple threads or processes, messages have to

be processed using a queuing method so that they don't interfere with

each other. One example might be a receive application queuing its

data for a subsequent transmit application. Another example might be

the queuing of error messages from STRS_Log.

Category Portability, Adaptability

Traced-from 4.5, 4.9, 5.1, 5.2

Use Case None

Related to Application

Notes The STRS Infrastructure Messaging methods refer to the API defined

in STRS-78 through STRS-81 and corresponding tables 48 through 51.

Verification Method Inspection

7.78 STRS-78 STRS_QueueCreate

Requirement The STRS infrastructure shall contain a callable STRS_QueueCreate

method as described in table 48, STRS_QueueCreate().

Rationale For an open architecture to support portability, the architecture has to

be standardized across platforms and implementations. In particular,

waveform applications and services have to use standard interfaces

across all platforms.

Category Portability

Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9, 5.1, 5.2

Use Case None

Related to OE

Notes The table in the requirement is in NASA-STD-4009.

Verification Method Use WFCCN.

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

95 of 119

7.79 STRS-79 STRS_QueueDelete

Requirement The STRS infrastructure shall contain a callable STRS_QueueDelete

method as described in table 49, STRS_QueueDelete().

Rationale For an open architecture to support portability, the architecture has to

be standardized across platforms and implementations. In particular,

waveform applications and services have to use standard interfaces

across all platforms.

Category Portability

Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9, 5.1, 5.2

Use Case None

Related to OE

Notes The table in the requirement is in NASA-STD-4009.

Verification Method Use WFCCN.

7.80 STRS-80 STRS_Register

Requirement The STRS infrastructure shall contain a callable STRS_Register

method as described in table 50, STRS_Register().

Rationale The publish-subscribe design pattern provided a way for the publisher

of a message to send the message to all subscribers without knowing

the details. For an open architecture to support portability, the

architecture has to be standardized across platforms and

implementations. In particular, waveform applications and services

have to use standard interfaces across all platforms.

Category Portability

Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9, 5.1, 5.2

Use Case None

Related to OE

Notes The table in the requirement is in NASA-STD-4009.

Verification Method Use WFCCN.

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

96 of 119

7.81 STRS-81 STRS_Unregister

Requirement The STRS infrastructure shall contain a callable STRS_Unregister

method as described in table 51, STRS_Unregister().

Rationale The publish-subscribe design pattern provides a way for the publisher

of a message to send the message to all subscribers without knowing

the details. For an open architecture to support portability, the

architecture has to be standardized across platforms and

implementations. In particular, waveform applications and services

have to use standard interfaces across all platforms.

Category Portability

Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9, 5.1, 5.2

Use Case None

Related to OE

Notes The table in the requirement is in NASA-STD-4009.

Verification Method Use WFCCN.

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

97 of 119

7.82 STRS-82 Use Time Control API

Requirement Any portion of the STRS Applications on the GPP needing time

control shall use the STRS Infrastructure Time Control methods to

access the hardware and software timers.

Rationale For portability of waveform applications, a standard API for using

timers in the GPP was necessary. The timers are expected to be used

for relatively low accuracy timing such as time stamps, timed events,

and time constraints. As the speed of new GPPs increases over time,

the timers are expected to be used for signal processing.

Category Portability

Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9, 5.1, 5.2

Use Case None

Related to Application

Notes The STRS Infrastructure Time Control methods refer to the API

defined in STRS-83 through STRS-88 and corresponding tables 52

through 57 in NASA-STD-4009.

Verification Method Inspection

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

98 of 119

7.83 STRS-83 STRS_GetNanoseconds

Requirement The STRS infrastructure shall contain a callable

STRS_GetNanoseconds method as described in table 52,

STRS_GetNanoseconds().

Rationale For an open architecture to support portability, the architecture has to

be standardized across platforms and implementations. In particular,

waveform applications and services have to use standard interfaces

across all platforms.

Category Portability

Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9, 5.1, 5.2

Use Case None

Related to OE

Notes The table in the requirement is in NASA-STD-4009.

Verification Method Use WFCCN.

7.84 STRS-84 STRS_GetSeconds

Requirement The STRS infrastructure shall contain a callable STRS_GetSeconds

method as described in table 53, STRS_GetSeconds().

Rationale For an open architecture to support portability, the architecture has to

be standardized across platforms and implementations. In particular,

waveform applications and services have to use standard interfaces

across all platforms.

Category Portability

Traced-from

4.1, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9, 5.1, 5.2

Use Case

None

Related to OE

Notes The table in the requirement is in NASA-STD-4009.

Verification Method Use WFCCN.

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

99 of 119

7.85 STRS-85 STRS_GetTime

Requirement The STRS infrastructure shall contain a callable STRS_GetTime

method as described in table 54, STRS_GetTime().

Rationale For an open architecture to support portability, the architecture has to

be standardized across platforms and implementations. In particular,

waveform applications and services have to use standard interfaces

across all platforms.

Category Portability

Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9, 5.1, 5.2

Use Case None

Related to OE

Notes The table in the requirement is in NASA-STD-4009.

Verification Method Use WFCCN.

7.86 STRS-86 STRS_GetTimeWarp

Requirement The STRS infrastructure shall contain a callable STRS_GetTimeWarp

method as described in table 55, STRS_GetTimeWarp().

Rationale For an open architecture to support portability, the architecture has to

be standardized across platforms and implementations. In particular,

waveform applications and services have to use standard interfaces

across all platforms.

Category Portability

Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9, 5.1, 5.2

Use Case None

Related to OE

Notes The table in the requirement is in NASA-STD-4009.

Verification Method Use WFCCN.

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

100 of 119

7.87 STRS-87 STRS_SetTime

Requirement The STRS infrastructure shall contain a callable STRS_SetTime

method as described in table 56, STRS_SetTime().

Rationale For an open architecture to support portability, the architecture has to

be standardized across platforms and implementations. In particular,

waveform applications and services have to use standard interfaces

across all platforms.

Category Portability

Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9, 5.1, 5.2

Use Case None

Related to OE

Notes The table in the requirement is in NASA-STD-4009.

Verification Method Use WFCCN.

7.88 STRS-88 STRS_Synch

Requirement The STRS infrastructure shall contain a callable STRS_Synch method

as described in table 57, STRS_Synch().

Rationale For an open architecture to support portability, the architecture has to

be standardized across platforms and implementations. In particular,

waveform applications and services have to use standard interfaces

across all platforms.

Category Portability

Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9, 5.1, 5.2

Use Case

None

Related to OE

Notes The table in the requirement is in NASA-STD-4009.

Verification Method Use WFCCN.

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

101 of 119

7.89 STRS-89 Provide STRS.h

Requirement The STRS platform provider shall provide an STRS.h file containing

the STRS predefined data shown in table 58, STRS Predefined Data.

Rationale For portability, standard names are defined for various constants and

data types.

Category Portability

Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9, 5.1, 5.2

Use Case

None

Related to OE

Notes The table in the requirement is in NASA-STD-4009.

Verification Method Inspection using OE script and WFCCN.

7.90 STRS-90 Provide POSIX

Requirement The STRS OE shall provide the interfaces described in POSIX IEEE

Standard 1003.13-2003 profile PSE51.

Rationale For an open architecture to support portability, the architecture has to

be standardized across platforms and implementations. Where

possible, use currently available standards. Thus POSIX subsets were

chosen to implement certain OS services missing from the list of

STRS Application-provided methods. The POSIX subsets are widely

available, are implemented by multiple OSs, and are scalable.

Layering of the architecture separates and encapsulates functionality

so that the parts are less influenced by changes to the other. This

separation of functionality promotes portability.

Category Portability

Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.7, 4.8, 4.9, 5.1, 5.2

Use Case None

Related to OE

Notes

None

Verification Method Inspection

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

102 of 119

7.91 STRS-91 Use POSIX

Requirement STRS applications shall use POSIX methods except for the unsafe

functions listed in table 59, Replacements for Unsafe Functions.

Rationale For an open architecture to support portability, the architecture has to

be standardized across platforms and implementations. Where

possible, use currently available standards. Thus POSIX subsets were

chosen to implement certain OS services missing from the list of

STRS Application-provided methods. The POSIX subsets are widely

available, are implemented by multiple OSs, and are scalable.

Layering of the architecture separates and encapsulates functionality

so that the parts are less influenced by changes to the other. This

separation of functionality promotes portability.

Category Portability

Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.7, 4.8, 4.9, 5.1, 5.2

Use Case

None

Related to Application

Notes Table 2, STRS Architecture Standard, Table 59, Replacements for

Unsafe Functions, is a copy of table 59 of NASA-STD-4009 cited in

the requirement.

Verification Method Inspection using compliance tool.

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

103 of 119

Table 2—STRS Architecture Standard, Table 59,

Replacements for Unsafe Functions

Unsafe Function

Do Not Use!

Reentrant Counterpart

OK to Use

abort STRS_AbortApp

asctime asctime_r

atexit -

calloc -

ctermid ctermid_r

ctime ctime_r

exit STRS_AbortApp

free -

getlogin getlogin_r

gmtime gmtime_r

localtime localtime_r

malloc -

rand rand_r

readdir readdir_r

realloc -

strtok strtok_r

tmpnam tmpnam_r

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

104 of 119

7.92 STRS-92 Document HAL

Requirement The STRS platform provider shall provide STRS platform HAL

documentation that includes the following:

(1) For each method or function, its calling sequence, return

values, an explanation of its functionality, any preconditions

for using the method or function, and the postconditions after

using the method or function.

(2) Information required to address the underlying hardware—

including interrupt input and output, memory mapping, and

the configuration data necessary to operate in the STRS

platform environment.

Rationale The HAL API is to be published so that specialized hardware made by

one company may be integrated with the STRS infrastructure made by

a different company.

The HAL API documentation is to include a description of each

method or function used, including its calling sequence, return values,

an explanation of its functionality, any preconditions before using the

method/function, and the status after using the method or function.

The HAL API documentation is to also contain information about the

underlying hardware, such as address and data interfaces, interrupt

input and output, power connections, plus other control and data lines

necessary to operate in the STRS platform environment.

Category Reconfigurability, Adaptability, Extensibility

Traced-from 4.4, 4.5, 4.7, 4.8, 5.1, 5.2

Use Case

None

Related to Platform

Notes

See STRS-11.

Verification Method Inspection of HAL document.

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

105 of 119

7.93 STRS-93 OE Uses HAL (Deleted)

Requirement This requirement was deleted because it was the same as STRS-11.

Rationale STRS-11 stated the same thing, with only a few words different, so

STRS-93 is redundant. STRS-93 previously stated: The STRS

infrastructure shall use the HAL APIs to communicate with the

specialized hardware via the physical interface defined by the STRS

platform provider.

Category Adaptability, Extensibility

Traced-from 4.4, 4.5, 5.1, 5.2

Use Case

None

Related to

OE

Notes

None

Verification Method Not applicable (N/A)

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

106 of 119

7.94 STRS-94 External Commands

Requirement An STRS platform shall accept, validate, and respond to external

commands.

Rationale To adapt to changing circumstances, an STRS radio has to accept

external commands from a ground station, another satellite, or another

system on the same satellite. The external commands have to be

validated as required by the mission. There has to be a way to

determine whether or not the command worked and, for some

commands, the resulting values.

Category Adaptability

Traced-from 4.5, 5.4, 5.15

Use Case Waveform Upload, STRS OE Upload, Waveform Instantiation,

Waveform Start, Processor Resource Sharing with Flight Computer,

Set Waveform Parameter, Get Waveform Parameter, Transmit a

Packet, Receive a Packet, Waveform Stop, Waveform Deallocation,

Waveform Abort, Waveform Remove, Built-In-Test

Related to OE

Notes None

Verification Method Observation of radio operation.

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

107 of 119

7.95 STRS-95 Use STRS APIs

Requirement An STRS platform shall execute external application control

commands using the standardized STRS APIs.

Rationale To promote portability and adaptability, the use of the standard STRS

APIs is required. One waveform should be able to control another

waveform or device in a portable manner.

Category Portability, Adaptability

Traced-from 4.1, 4.2, 4.3, 4.5, 4.9, 5.1, 5.2, 5.4, 5.6, 5.7

Use Case Waveform Upload, STRS OE Upload, Waveform Instantiation,

Waveform Start, Processor Resource Sharing with Flight Computer,

Set Waveform Parameter, Get Waveform Parameter, Transmit a

Packet, Receive a Packet, Waveform Stop, Waveform Deallocation,

Waveform Abort, Waveform Remove, Built-In Test

Related to OE

Notes None

Verification Method Use WFCCN.

7.96 STRS-96 Use STRS_Query

Requirement The STRS infrastructure shall use the STRS_Query method to service

external system requests for information from an STRS application.

Rationale The only way to request information from an application is by means

of data values returned when an application method is invoked. The

STRS_Query/APP_Query methods are designed for this purpose.

Although STRS_RunTest/APP_RunTest could be used to request data

values, they are designed for testing.

Category Adaptability, Extensibility

Traced-from 4.4, 4.5, 5.1, 5.2

Use Case Get Waveform Parameter

Related to OE

Notes None

Verification Method Inspection

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

108 of 119

7.97 STRS-97 Use STRS_Log (Deleted)

Requirement This requirement was deleted because it was the same as STRS-57.

Rationale STRS-97 previously stated: An STRS application shall use the

STRS_Log and STRS_Write methods to send STRS telemetry set

information to the external system. STRS-97 was less clear than

STRS-57 because STRS-97 involved the external interface, not just

the application to infrastructure call. Also, in some implementations,

the application telemetry may not be sent directly to the external

interface but may be sent to a file from which the telemetry may be

downloaded as necessary.

Category Portability

Traced-from 4.9, 5.1, 5.15, 5.16, 5.23

Use Case None

Related to Application

Notes Replaced by STRS-57 after simplifying “STRS_Log and

STRS_Write”.

Verification Method N/A.

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

109 of 119

7.98 STRS-98 Document Platform for XML

Requirement The STRS platform provider shall document the necessary platform

information (including a sample file) to develop a predeployed

application configuration file in XML 1.0.

Rationale When functions, interfaces, components, and/or design rules are

defined and published, the architecture is open. Open architectures

facilitate interoperability among commercial and government

developers and minimize the operational impact of upgrading

hardware and software components. Leveraging the existing XML

standard may reduce NASA’s costs and risks by increasing reliability.

Category Reconfigurability, Adaptability, Extensibility

Traced-from 4.2, 4.4, 4.5, 4.7, 5.2, 5.4

Use Case None

Related to OE

Notes None

Verification Method Inspection of document and sample file.

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

110 of 119

7.99 STRS-99 Document WF for XML

Requirement The STRS application developer shall document the necessary

application information to develop a predeployed application

configuration file in XML 1.0.

Rationale When functions, interfaces, components, and/or design rules are

defined and published, the architecture is open. Open architectures

facilitate interoperability among commercial and government

developers and minimize the operational impact of upgrading

hardware and software components. Leveraging the existing XML

standard may reduce NASA’s costs and risks by increasing reliability.

Category Reconfigurability, Adaptability, Extensibility

Traced-from 4.2, 4.4, 4.5, 4.7, 5.2, 5.4

Use Case

None

Related to Application

Notes None

Verification Method Inspection of delivered documentation.

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

111 of 119

7.100 STRS-100 Provide XML File

Requirement The STRS integrator shall provide a predeployed application

configuration file in XML 1.0.

Rationale A waveform (STRS application) configuration file contains specific

information that (1) allows STRS to instantiate the application; (2)

provides default configuration values; and (3) provides connection

references to ports and services needed by the application. The format

of the configuration files has to be defined in XML using an XML

schema. The XML should be preprocessed to optimize space in the

STRS radio memory while keeping the equivalent content. Examples

include platform configuration files, STRS infrastructure configuration

files as a XML schema, and waveform configuration files that contain

specific information that allows STRS to instantiate the application,

provide default configuration values, and provide connection

references to ports and services needed by the application. Leveraging

the existing XML standard may reduce NASA’s costs and risks by

increasing reliability.

Category Reconfigurability

Traced-from 4.7, 5.3, 5.4

Use Case None

Related to OE

Notes None

Verification Method Inspection using XMLSpy.

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

112 of 119

7.101 STRS-101 XML Content

Requirement The predeployed STRS application configuration file shall identify the

following application attributes and default values:

(1) Identification.

A. Unique STRS handle name for the application.

B. Class name (if applicable).

(2) State after processing the configuration file.

(3) Any resources to be loaded separately.

A. Filename of loadable image.

B. Target on which to put loadable image file.

C. Target memory in bytes, number of gates, or logic

elements.

(4) Initial or default values for all distinct operationally

configurable parameters.

Rationale A waveform (STRS application) configuration file contains specific

information that (1) allows STRS to instantiate the application; (2)

provides default configuration values; and (3) provides connection

references to ports and services needed by the application. The format

of the configuration files has to be defined in XML using an XML

schema. The XML should be preprocessed to optimize space in the

STRS radio memory while keeping the equivalent content. Examples

include platform configuration files, STRS infrastructure configuration

files as a XML schema, and waveform configuration files that contain

specific information that allows STRS to instantiate the application,

provide default configuration values, and provide connection

references to ports and services needed by the application.

Category Reconfigurability

Traced-from 5.4

Use Case None

Related to Application

Notes None

Verification Method Inspection of delivered files and documentation.

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

113 of 119

7.102 STRS-102 Provide XML Schema

Requirement The STRS platform provider shall provide an XML 1.0 schema

definition (XSD) file to validate the format and data for predeployed

STRS application configuration files, including the order of the tags, the

number of occurrences of each tag, and the values or attributes.

Rationale A waveform (STRS application) configuration file contains specific

information that (1) allows STRS to instantiate the application; (2)

provides default configuration values; and (3) provides connection

references to ports and services needed by the application. The format

of the configuration files has to be defined in XML using an XML

schema. Since the term XML schema was variously interpreted to

mean either a description or a file, the requirement was clarified to

specify that an XML schema definition (XSD) file is required. The

XML should be preprocessed to optimize space in the STRS radio

memory while keeping the equivalent content. Examples include

platform configuration files, STRS infrastructure configuration files as

a XML schema, and waveform configuration files that contain specific

information that allows STRS to instantiate the application, provide

default configuration values, and provide connection references to

ports and services needed by the application. Leveraging the existing

XML standard may reduce NASA’s costs and risks by increasing

reliability.

Category Reliability

Traced-from 4.3, 4.7, 5.3, 5.4

Use Case None

Related to OE

Notes None

Verification Method Inspection using XMLSpy.

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

114 of 119

7.103 STRS-103 Provide XML Transformation Tool

Requirement The STRS platform provider shall document the transformation (if

any) from a predeployed application configuration file in XML into a

deployed application configuration file and provide the tools to

perform such transformation.

Rationale A waveform (STRS application) configuration file contains specific

information that (1) allows STRS to instantiate the application; (2)

provides default configuration values; and (3) provides connection

references to ports and services needed by the application. The format

of the configuration files has to be defined in XML using an XML

schema. The XML should be preprocessed to optimize space in the

STRS radio memory while keeping the equivalent content. Examples

include platform configuration files, STRS infrastructure configuration

files as an XML schema, and waveform configuration files that

contain specific information that allows STRS to instantiate the

application, provide default configuration values, and provide

connection references to ports and services needed by the application.

Category Reconfigurability, Adaptability, Extensibility

Traced-from 4.4, 4.5, 5.2, 5.3, 5.4

Use Case

None

Related to OE

Notes

None

Verification Method Inspection of document and tools.

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

115 of 119

7.104 STRS-104 Provide XML Transformed

Requirement The STRS integrator shall provide a deployed STRS application

configuration file for the STRS infrastructure to place the STRS

application in the specified state.

Rationale A waveform (STRS application) configuration file contains specific

information that (1) allows STRS to instantiate the application; (2)

provides default configuration values; and (3) provides connection

references to ports and services needed by the application. The format

of the configuration files has to be defined in XML using an XML

schema. The XML should be preprocessed to optimize space in the

STRS radio memory while keeping the equivalent content. Examples

include platform configuration files, STRS infrastructure configuration

files as an XML schema, and waveform configuration files that

contain specific information that allows STRS to instantiate the

application, provide default configuration values, and provide

connection references to ports and services needed by the application.

Category Reconfigurability

Traced-from 5.4

Use Case

None

Related to OE

Notes None

Verification Method Inspection of delivered files and documentation.

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

116 of 119

7.105 STRS-105 OE Provides API in C

Requirement The STRS infrastructure APIs shall have an ISO/IEC C language

compatible interface.

Rationale Because portability is a basic goal but middleware is not required, a

totally language-independent solution was not available. The lowest

common denominator turns out to be a C language interface. Using a

standard ISO/IEC 9899 C or ISO/IEC 14882 C++ aids portability.

The year is not included in the requirement, so that obsolete compilers

are not mandated.

Category Portability

Traced-from 4.1, 4.9, 5.1, 5.2

Use Case None

Related to OE

Notes None

Verification Method Use WFCCN.

7.106 STRS-106 Use STRS.h

Requirement An STRS application shall use the appropriate constant, typedef, or

struct defined in table 58, STRS Predefined Data when the data are

used to interact with the STRS APIs.

Rationale For portability, standard names are defined for various constants and

data types.

Category Portability

Traced-from 4.1, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9, 5.1, 5.2

Use Case

None

Related to Application

Notes The table in the requirement is in NASA-STD-4009.

Verification Method Inspection

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

117 of 119

7.107 STRS-107 Document External Commands

Requirement An STRS platform provider shall document the external commands

describing their format, function, and any STRS methods invoked.

Rationale To adapt to changing circumstances, an STRS radio has to accept

external commands from a ground station, another satellite, or another

system on the same satellite. The external commands have to be

validated as required by the mission. There has to be a way to

determine whether the command worked and, for some commands, the

resulting values. To promote portability and adaptability, the use of the

standard STRS APIs is required.

Category Adaptability

Traced-from 4.5, 5.1, 5.4, 5.5, 5.6, 5.7, 5.15

Use Case Waveform Upload, STRS OE Upload, Waveform Instantiation,

Waveform Start, Processor Resource Sharing with Flight Computer,

Set Waveform Parameter, Get Waveform Parameter, Transmit a

Packet, Receive a Packet, Waveform Stop, Waveform Deallocation,

Waveform Abort, Waveform Remove, Built-In-Test

Related to OE

Notes None

Verification Method Inspection of documentation.

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

118 of 119

7.108 STRS-108 Document Thermal and Power Limits

Requirement The STRS platform provider shall describe, in the HID document, the

thermal and power limits of the hardware at the smallest modular level

to which power is controlled.

Rationale The power consumption and resulting heat generation of a

reprogrammable FPGA will vary according to the amount of logic

used and the clock frequency(s). The power consumption may not be

constant for each possible waveform that can be loaded on the

platform. The STRS platform provider should document the maximum

allowable power available and thermal dissipation of the FPGA(s) on

the basis of the maximum allowable thermal constraints of FPGA(s) of

the platform. For human spaceflight environments, touch temperature

requirements may limit dissipation further; therefore, these reductions

are to be factored into the given dissipation limits.

Category Reliability, Adaptability

Traced-from 3.4, 3.5, 4.3, 4.7, 5.9, 5.10, 5.15, 5.16

Use Case None

Related to Platform

Notes See also STRS-9

Verification Method Inspection of HID document.

NASA-HDBK-4009

APPROVED FOR PUBLIC RELEASE—DISTRIBUTION IS UNLIMITED

119 of 119

7.109 STRS-109 Provide General-Purpose Processing Module

Requirement An STRS platform shall have a GPM that contains and executes the

STRS OE and the control portions of the STRS applications and

services software.

Rationale The GPM contains and executes the STRS OE, including POSIX,

STRS interface code, and configuration file parsing, to support the

corresponding requirements. A layered hardware architecture

augments the layered software architecture by providing the ability to

change portions without affecting other portions to support

extensibility, adaptability, and portability.

Category Portability, Adaptability

Traced-from 4.3, 4.4, 4.5, 4.6, 4.8, 4.9, 5.1, 5.2

Use Case None

Related to Platform

Notes None

Verification Method Inspection

